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Abstract

This paper has been devoted to such approach for designed and fabricated
the dual frequency piezoelectric ultrasonic transducer having longitudinal
vibrations for high power application. By using analytical analysis, the reso-
nance frequency equations of the transducer in the half-wave and the all-wave
vibrational modes were determined for the assumed first resonance frequency
of 25kHz. According to the resonance frequency equation, four transducers
with two different constructions (Type A and B) were designed and made. The
finite element method provided by commercial ANSYS was employed for FEM
modeling and analysis of the transducer to observe its vibration behavior. It
was shown that there is a good agreement between the experimental and FEM
results. The designed and fabricated transducer can be excited to vibrate
at two resonance frequencies, which correspond to the half-wave and the
all-wave vibrational modes of the transducer, and use of Type B transducer
greatly increased the mechanical quality factor (Q) of piezoelectric transducers.

Nomenclature

A (m2) Cross-section ρ (Kg/m3) Density
ν Poisson’s ratio ω (Hz) Angular resonant frequency
C (m/s) Sound speed Cm (F ) Equivalent compliance
Cs (F ) Static capacitance of piezoelectric d (C/N) Piezoelectric charge constant
f Hz Resonant frequency of transducer L (m) Length
Lm H Equivalent motional mass Q Quality factor
Rm Dissipative power loss t (sec) Time
T (N/m2) Stress u (m) Displacement
Y (N/mm2) Youngs modulus εsr Dielectric relative permittivity
λ (m) Wave length

1. Introduction

Application of high intensity ultrasonic waves has been
considerably progressed during the last decade and
conventional Langevin or sandwich transducers have
had a common use as the driving source of such waves.
Traditional ultrasonic-transducers’ sandwich structure
is operated only on one resonance frequency. There

have been great efforts to optimize and improve such
transducers and their applications [1-5]. However, to
produce ultrasound with different frequencies, a multi-
frequency ultrasonic transducer should be used. This
presents a new subject for ultrasonic cleaning and ul-
trasonic liquid processes. In the case of dual frequency
ultrasonic cleaning, there exist waves with different fre-
quencies in the cleaning tank, the standing wave is
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destroyed and the difference between the nodes and
antinodes is decreased. Therefore the cleaning quality
can be improved. In recent decades, there has been
some interest in designing dual frequency piezoelectric
transducer by means of two groups of piezoelectric ce-
ramic elements. One group is used as the active ele-
ment which is connected to an electrical generator; the
other group is used as the controlling elements which
are connected to inductance or capacitance. When the
inductance or capacitance is changed, the resonance
frequency can be adjusted by means of the piezoelec-
tric effect [6-8]. Lin and Xu [9] presented the analysis of
a sandwich transducer with two sets of piezoelectric ce-
ramic elements which are separated by a middle metal
cone. The two sets of piezoelectric elements are excited
separately, and therefore two groups of resonance and
anti-resonance frequency can be obtained. Lin [10] also
studied an improved cymbal transducer that consists
of a combined piezoelectric ring and metal ring, and
metal caps. In another paper, Lin et al. [11] studied a
composite transducer that consists of a sandwich lon-
gitudinal piezoelectric transducer, an isotropic metal
hollow cylinder with large radial dimension, and the
front and back metal radiation mass. In their paper,
the resonance frequency was found analytically by elec-
trical equivalent circuit model method. Finally, they
manufactured some transducers and measured the res-
onance frequency and the radiation acoustic field in
order to compare them with the analytical and numer-
ical results. Deniz [12] studied numerical and experi-
mental design of a multi-frequency underwater acous-
tic transducer with two sets of piezoelectric tubes. In
this study, one of the tubes operated at about 30kHz
and the other one at about 60kHz. Asami and Miura
[13] investigated a new type of ultrasound longitudinal-
torsional vibration source consisting of a longitudinal
transducer and a torsional transducer at opposite ends
of a uniform rod as a vibration source. The individ-
ual vibrations could be controlled. The longitudinal
vibration distributions for driving only the longitudi-
nal transducer and the torsional vibration distributions
for driving only the torsional transducer were similar
in the uniform rod.

In this paper a modification on the sandwich struc-
ture was implemented by employing two different con-
structions; Type A, in which the center mass was not
connected to the central bolt and the central bolt
could be approximately considered as the rigid con-
nection between two end metal masses and Type B,
in which the central bolt mechanically connected all
masses (Fig. 1). The aim of this research is to investi-
gate the behavior of the proposed ultrasonic transduc-
ers in order to discover the modes of vibration and
proper construction and the material of the central
mass. These transducers were analyzed by theoretical,
numerical and experimental methods. The analyzed
transducers were composed of four piezo-ceramic rings,

PZT-SA, a steel cylinder-shaped back mass (St 304),
an Aluminum cylinder-shaped front mass (Al 7075-T6)
and a steel cylinder-shaped central mass (SA and SB)
and an Aluminum cylinder-shaped central mass (AA
and AB). The configurations of modeled and designed
ultrasonic transducers are shown in Fig. 2.

Fig. 1. Ultrasonic transducers: Type A (Center mass
connected directly to bolt) and Type B (Center mass
moves independently of the bolt).

By using the analytical method and assuming a cer-
tain resonant frequency and a power, the resonance fre-
quency equations of the transducer and the dimensions
of the components were determined. Then, the finite
element analysis provided by ANSYS was employed for
FEM analysis to observe the vibration behavior of the
transducer and to verify the validity of the analytical
calculations. Finally, the analytical analysis results,
simulation results of FEM, and experimental results
were compared and discussed.

Fig. 2. The Configuration of modeled and designed
ultrasonic transducers.
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2. Theoretical Analysis of the Dual Fre-
quency Piezoelectric Transducer

Fig. 3 shows the transducer with a center mass. In
this figure, Lb, 2Lc, and Lf are the lengths of the back
mass, the central cylinder mass and the front metal
mass respectively; each having a circular cross-section.
Two groups of piezoelectric ceramic driving elements
whose lengths are Lp, are separated by the center mass.
To simplify the theoretical analysis, the following as-
sumptions were made:
Lateral pressure on the transducer is zero and sinu-
soidal longitudinal plane waves propagate axially. Di-
ameter variation along transducer is also far enough
from the critical value. Mean while, the influence of
fillets and chamfers in the corners are ignored. There-
fore, lateral or radial modes of vibration are negligible
and the problem is one-dimensional.

Maximum diameter of the transducer is less than
a quarter of the sound wavelength and the relation-

ship c =

√
Y

ρ
can be used with relatively accurate ap-

proximation (where c is the sound speed in media with
elasticity module of Y and density of ρ) [14]. The to-
tal length of the transducer is appropriate to standing
waves generation. Acoustic impedance of air is consid-
ered zero so that a transducer operating in air is said
to be unloaded.

Fig. 3. The geometrical diagram of the ultrasonic
transducers with two frequencies (Type A).

The most fundamental rule in determination of var-
ious axial dimensions in the transducer is to permit
it to operate in resonance, the overall length should

be exactly
λ

2
(or a whole coefficient of

λ

2
). Since the

transducer is not a single body and consists of sev-
eral parts with different materials and cross-sections
along the transducer, the following analytical relation-
ship for one-dimensional longitudinal sinusoidal plane
wave propagation in medium is applied [15]:

d2ui

dx2
i

+
1

Ai

dAi

dxi
· dui

dxi
+

w2
n

C2
0i

ui = 0 (1)

Equation (1) is simplified to the following differen-
tial equation for each section through which the cross-

section is constant

(
dAi

dxi
= 0

)
:

d2ui

dx2
i

+ k2i ui = 0 (2)

ki =
w

C0i

(3)

Depending on the boundary conditions and vibrational
mode, the resonance frequency equations of the trans-
ducer with two frequencies in half-wave and one-wave
vibrational mode can be obtained.

2.1. The Resonance Frequency Equations of the
Transducer in the Half-wave Vibrational
Mode

In this case, the transducer can be regarded as a longi-
tudinal vibrator of half a wavelength, its two ends are
the antinodes, and there is a node in the transducer.
Let the node be located in the middle cylinder of the
transducer, and divide the center mass into two same
cylinders of Lc1 and Lc2 (Lc1 = Lc2 = Lc).

The part after the node plane consists of the center
mass of length Lc, the piezoelectric ceramic and the
back mass (Fig. 4).

Fig. 4. The geometrical diagram of the transducer in
the half-wave vibrational mode (Type A).

Solving the Equation (2) for each section of Lc

and Lp and applying the boundary conditions as
uc(xc = 0) = 0, it results:

uc = A1 sin(kcxc) +A2 cos(kcxc)

A2 = 0

uc = A1 sin(kcxc) (4)

According to Hookes Law and Equation (4) the stress,
T, is given by equation:

Tc = Yc =
duc

dxc
= A1Yckc cos(kcxc) (5)

where Y (N/m2) is the Youngs modulus.

up = A3 sin(kpxp) +A4 cos(kpxp)

up = D1 sin(kpxp + α)
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where D1 =
√
A2

3 +A2
4 and α = tan−1 A4

A3

Tp = Yp
dup

dxp
= D1Ypkp cos(kpxp + α) (6)

The boundary conditions between the parts are:
equilibrium of displacement (continuity condition) and
force (Newtons third law) of the two contacting media
at the shared plane.

uc = (x = Lc) = up(xp = 0) =⇒ A1 sin(kcLc) = D1 sin(α) (7)

Fc = (xc = Lc) = Fp(xp = 0), F = T ·A =⇒ A1YcKcAc cos(kcLc) = D1YpkpAp cos(α) (8)

By dividing equation (4) over equation (5) value for α
will be:

α = tan−1

[
YpkpAp

YckcAc
tan(kcLc)

] According to the similar procedure by solving Equa-
tion (2) for each section of Lb1 and Lb2 and applying
boundary conditions:

ub1 = A5 sin(kbxb1) +A6 cos(bbxb1)

ub1 = D2 sin(kbxb1 + β)

ub2 = A7 sin(kbxb2) +A8 cos(kbxb2)

ub2 = D3 sin(kbxb2 + φ)

up(xp = Lp) = ub1(xb1 = 0) =⇒ D2 sin(kpLp + α) = D2 sin(β)

ub1(xb1 = Lb1) = ub2(xb2 = 0) =⇒ D2 sin(kbLb1 + β) = D3 cos(kbLb2)

Fp(xp = Lp) = Fb1(xb1 = 0), F = T ·A =⇒ D1YpAp cos(KpLp + α) = D1YbkbAb1 cos(β) (9)

Fb1(xb1 = Lb1) = Fb2(xb2 = 0) =⇒ D2YbkbAb1 cos(KbLb1 + β) = D3YbkbAb2 sin(kbLb2) (10)

β = tan−1

[
YbkbAb1

YpkpAp
tan(kpLp + α)

]
= tan−1

[
YbkbAb1

YpkpAp
tan

(
kpLp + tan−1

[
YpkpAp

YckcAc
tan(kcLc)

])]

By dividing Equation (9) over Equation (10) the
resonance frequency equation of the part after the node
plane (section I) was determined:

Ab1 cos

(
kbLb1 + tan−1

[
YbkbAb1

YpkpAp
tan

(
kpLp+

tan−1

[
YpkpAp

EckcAc
tan(kcLc)

])])
cos(kbLb2)

−Ab2 sin(kbLb2) sin

(
kbLb1 + tan−1

[
YbkbAb1

YpkpAp
tan

(
kpLp+

tan−1

[
YpkpAp

EckcAc
tan(kcLc)

])])
= 0 (11)

The resonance frequency equation of the part before
the node plane can be derived according to the sim-
ilar procedure: The part before the node plane can
be regarded as a longitudinal transducer of a quarter
wavelength and it consists of the center mass of length
Lc1, the piezoelectric ceramic, and the front mass.

YfAfkf sin(kfLf )× sin

(
kpLp+

tan−1

[
YpkpAp

YckcAc
tan(kcLc)

])
−

YpApkp sin(kpLp)× sin

(
kpLp+

tan−1

[
YpkpAp

YckcAc
tan(kcLc)

])
= 0 (12)

Equations (11) and (12) are the resonance frequency
equations of the transducer in half-wave vibrational
mode. When the material parameters and the reso-
nance frequency are designated, the transducer can be
designed and the dimensions can be calculated from
the equations.

2.2. The Resonance Frequency Equations of the
Transducer in the Half-wave Vibrational
Mode

In this case, apart from the two antinodes at the ends
of the transducer there is also an antinode in the trans-
ducer. The transducer can be regarded as a combina-
tion of two transducers of half a wavelength. As shown
in Fig. 5 when the antinode is located at the center
mass, it divides the center mass into two cylinders of
Lc1 and Lc2, Therefore 2Lc will be:

2Lc = Lc1 + Lc2 (13)
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Fig. 5. The geometrical diagram of the transducer in
the one wave vibrational mode (Type A).

The half wavelength transducer before the antin-
ode in the center mass consists of the center mass of
length Lc1, the piezoelectric ceramic (L′

p1, L
′
p2) and the

front mass (Lf ). When the transducer is unloaded, the
stress at the displacement antinode in the center mass
is equal to zero, therefore, the half wavelength trans-
ducer vibrates freely. Applying the boundary condi-
tions and solving the Equation (2) for each section of
part I, the resonance frequency equation of the part be-
fore the antinode in the center mass was determined:

YcAc ×
w

cc
× tan

[
w

cc
(Lc − Lc1)

]
×

tan

(
w

cp
Lp

)
−

Yp ×
w

cp
×Ap

YfAf
w

cf
tan

(
w

cf
Lf

)

1 + tan

(
w

cp
Lp

)
×

Yp ×
w

cp
×Ap

YfAf
w

cf
tan

(
w

cf
Lf

)
− Yp ×

w

cp
×Ap = 0 (14)

The half wavelength transducer after the antinode
in the center mass consists of the center mass of length
Lc2, the piezoelectric ceramic (Lp1, Lp2) and the back

mass (Lb1, Lb2). The resonance frequency equation
of the part II can be derived according to the similar
procedure:

Ab1 −Ab2 tan

(
w

cb
Lb2

)
tan


w

cb
× Lb1 + tan−1


Yb ×

w

cb
×Ab1

Yb ×
w

cp
×Ap

×

tan

(
w

cp
Lp

)
−

Yp × w

cp
×AP

YcAc ×
w

cc
× tan

(
w

cc
Lc1

)

1 + tan

(
w

cp
Lp

)
×

YP
w

cp
Ap

YcAc ×
w

cc
× tan

(
w

cc
Lc1

)




= 0

(15)

According to the above analysis, the procedures for
designing an ultrasonic transducer with two frequencies
are as follows. a) When the resonance frequency of the
transducer in the half-wave vibrational mode, the ma-
terial parameters of the components of the transducer,
the dimensions of the piezoelectric ceramic and the
length of the center mass are given, the length of the
back mass and the front mass can be determined from
the resonance frequency equations (Equations (11) and
(12)) b) The next procedure is to determine the reso-
nance frequency of the transducer in the all-wave vi-
brational mode.

In the resonance frequency equations (Equations
(14) and (15)), there are two unknowns. They are
Lc1 and the resonance frequency of the transducer in
the all-wave vibrational mode (w = 2πf). As Equa-
tions (14) and (15) are transcendental ones, the ana-
lytic solutions are difficult to obtain; therefore, numer-
ical methods must be used. The procedures for solving
Equations (14) and (15) are as follows. (1) Give a value

of the resonance frequency of the transducer in the all-
wave vibrational mode, and from Equations (14) and
(15), two values for Lc1 can be found. (2) Change the
values of the resonance frequency of the transducer in
the all-wave vibrational mode until the two values of
Lc1 are equal.

3. FEM Modeling

The finite element method provided by commercial
ANSYS was employed for full 3D FEM modeling and
analysis of the transducer to observe its vibration be-
havior through its simulation by modal analysis and to
determine their natural frequencies by harmonic analy-
sis. This was also for finding the validity of the analyt-
ical results. The piezoelectric transducers were mod-
eled by using 3D method of modeling and meshing and
SOLID5 elements were used for piezoelectric and other
components.

Modal analysis was used to determine the natural

Journal of Stress Analysis/ Vol. 1, No. 2/ Autumn − Winter 2016-17 47



frequencies, mode shapes, and the location of nodal
plane. This analysis was performed under resonance
conditions with a constant voltage of zero being ap-
plied at all electrical contacts of ceramic disks. This is
a condition of ”short-circuit” where all voltage poten-
tials are connected to common ground. No structural
constraint was used for the modal analysis. This pro-
duces a simulation of an unrestrained transducer as-

sembly. This state is similar to the state of physical
testing where the transducer rests on the table with
no restriction. The Block Lanczos method was chosen
in this work to compute the natural frequency as this
method is recommended by ANSYS instructions [16].
Mode shapes and location of nodes are shown in Figs.
6 to 9.

Fig. 6. The displacement distribution along longitudinal axis of SA transducer, (a) half-wave, (b) all-wave
mode.

Fig. 7. The displacement distribution along longitudinal axis of AA transducer, (a) half-wave, (b) all-wave
mode.
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Fig. 8. The displacement distribution along longitudinal axis of SB transducer, (b) half-wave, (b) all-wave
mode.

Fig. 9. The displacement distribution along longitudinal axis of AB transducer, (a) half-wave, (b) all-wave
mode.

4. Experiments and Test of the Fabri-
cated Transducers

To verify the design theory of the piezoelectric trans-
ducer with two resonance frequencies, four piezoelectric
ultrasonic transducers were designed and made accord-
ing to the design theory of this paper (Fig. 10). The
designed and fabricated transducers were composed
of four piezo-ceramic rings, PZT-SA, a steel cylinder-
shaped back mass (St 304), an aluminum cylinder-
shaped front mass (Al 7075-T6), a steel/aluminum
cylinder-shaped central mass and a steel bolt. Table
1 shows the results obtained from analytical design of
transducers with nominal frequency of 25 kHz. For
the transducers design discussed in this paper, PZT-
SA which is produced by TAMURA Co., was chosen
as piezoelectric material. TAMURA manufacturer of
piezoelectric ceramics lists the material properties of
PZT-SA as [17]:
Dielectric relative permittivity matrix at constant
strain, [ε2r] (polarization axis along Y-axis):

[εsr] =

 874 0 0
0 718 0
0 0 874


Piezoelectric strain matrix (strain developed/electric

field applied), [e] (polarization axis along Y-axis):

[d] =


0 −131 0
0 286 0
0 −131 0
387 0 0
0 0 387
0 0 0


m

V
× 10−12

Compliance matrix [s] under constant electric field,
[sE ] (polarization axis along Y-axis):

[sE ] =
11.7 −5.17 −3.63 0 0 0
−5.17 15.5 −5.17 0 0 0
−3.63 −5.17 11.7 0 0 0

0 0 0 33.5 0 0
0 0 0 0 33.5 0
0 0 0 0 30.7

× 10−12m2/N

The most important quality quantifications of a high
power ultrasonic converter (operating in certain se-
lected resonant mode) are its quality factors equal to:

Q = 2π
Energy stored in the transducer during one full priode

Energy dissipated in the transducer during one full priode

= 2π
Es

Ed

Table 1
The results obtained from analytical design of transducers with nominal frequency of 25kHz.

Central Mass 2Lc(mm) Lf (mm) Lb1(mm) Lb2(mm) Lp(mm) LBolt(mm) Ltotal(mm)
St Type A 22.5 32.1 12 6.13 10 80 93.93
Al-Type A 8.5 32.21 12 6.24 10 70 80.15
St Type B 22.5 32.582 16.367 - 10 80 92.69
Al-Type B 8.5 32.676 16.453 - 10 75 78.829
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Fig. 10. The displacement distributions of AA transducer along longitudinal axis for all-wave mode.

The electric equivalent circuit of mechanically un-
load piezoelectric transducer is composed of series cir-
cuit Rm, Lm and Cm in parallel with Cs. The ele-
ments given in Fig. 11 are Cs; static capacitance of
piezo-ceramic, Lm and Cm; equivalent motional mass
and compliance elements of the transducer respectively
and Rm; relates to dissipative power loss which is at-
tributed to the joint losses.

Fig. 11. The electric equivalent circuit of piezoelectric
transducer.

Quality factor can be calculated (similar as in Elec-
tric Circuit Theory) for series resonance and for non-
loaded piezoelectric transducer as [18]:

Q =
Zm

Rm
=

1

Rm

√
Lm

Cm

To measure the resonance frequency and deter-
mine the equivalent circuit parameters of the de-
signed and fabricated ultrasonic transducers a precision
impedance analyzer (Agilent 4294A) was employed; the

sweeping frequency of this device was within 40Hz to
110MHz with a resolution of 0.001Hz. The suitable
sweeping frequency was selected for each type of ul-
trasonic transducer and phase and impedance versus
frequency diagram were drawn (Fig. 12) and the equiv-
alent circuit parameters such as Cs, Rm, Lm, and Cm

were determined. The measurement was made with
the transducer unloaded. Table 2 shows the summary
of the results obtained from impedance analyzer test.
The index 1 and 2 refers to the first and the second
mode of longitudinal vibration.

Fig. 12. The diagram of phase and impedance versus
frequency generated by Impedance Analyzer for AB
transducer.
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Table 2
The results obtained from analytical design of transducers with nominal frequency of 25kHz.

Transducer
Type

C01

(nf)
C02

(nf)
Cm1

(nf)
Cm2

(nf)
Lm1

(mH)
Lm2

(mH)
Rm1

(Ω)
Rm2

(Ω)
SA 6.695 5.335 0.557 0.868 51.065 18.808 94.884 22.312
AA 7.426 6.450 0.319 0.619 61.844 18.790 123.514 43.504
SB 5.532 5.663 1.488 1.398 12.433 13.125 11.921 8.140
AB 4.543 5.359 0.753 0.440 16.033 25.622 216.727Z 16.000

The determined results from analytical, FEM sim-
ulation, and experiment results are shown in Table 3,
where f01 and f02 are the calculated resonance frequen-
cies, ff1 and ff2 are the determined resonance frequen-

cies from FEM simulation, fm1 and fm2 are the mea-
sured frequencies of the transducers in the half-wave
and the all-wave vibrational modes respectively.

Table 3
The determined results from analytical, FEM simulation and experiment.

Transducer
type

f01
(Hz)

f02
(Hz)

ff1
(Hz)

ff2
(Hz)

fm1

(Hz)
fm2

(Hz)
Q1 Q2

SA 25000 41105.5 24955 42030 230857 39390 101.03 204.62
AA 25000 50357 25196 49685 23416 46662.5 112.69 119.65
SB 25000 40355.52 25975 41746 23800 37165 242.51 412.94
AB 25000 50175.07 26138 50766 24000 47408.75 216.71 468.23

To determine the displacement distribution along
longitudinal axis of transducer, the 2D Laser Doppler
Vibrometer (LDV 580-2D) was used (Fig. 12). By
using 2D-LDV, the speed amplitude and then
displacement along longitudinal axis of transducer was
determined. Figs. 13 to 16 show obtained result from
experimental test and FEM modeling.

Fig. 13. Measurment setup for determination of the
displacement distributions.

Fig. 14. The displacement distributions of SA transducer along longitudinal axis, (a) half-wave, (b) all-wave
mode.
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Fig. 15. The displacement distributions of AA trans-
ducer along longitudinal axis for all-wave mode.

Fig. 16. The displacement distributions of SB trans-
ducer along longitudinal axis for all-wave mode.

Fig. 17. The displacement distributions of AB trans-
ducer along longitudinal axis for all-wave mode.

5. Discussion

As can be seen from the Table 3, there was a differ-
ence between the measured resonance frequency and
the determined resonance frequencies from FEM simu-
lation and the intended one in designing process. This
error results from the simplifications made in analyz-
ing the wave propagation through the transducer. One
of the most trouble some simplifications is assumption

of one-dimensional wave propagation along the trans-
ducer which will lead to error in design of the trans-
ducer; especially to calculate the second resonance fre-
quency of the transducers. If lateral strains are also
taken into account by applying the general relationship
of Youngs modulus substituted into Equation 1, the de-
signed length of the transducer will be lower and this
leads to decline of the error in frequency. In addition,
interior mechanical damping of the transducer is omit-
ted, while structural (hysteretic) damping of energy is
always present in material which shifts the resonant
frequency down. Furthermore, the reason of this error
may be due to the ignorance of pre-stress of piezoelec-
tric transducer. It must also be noted that this model
ignores presence of the electrodes, normally used be-
tween the piezoelectric rings.

It can be seen from the data in Table 3 that Q
factor for Type B transducers is better than that of
Type A transducers. There are several possible ex-
planations for this result. In Type A transducers the
center mass is not directly connected to the central
bolt, therefore it may move in redial direction and
causes a miss elongation or matching between trans-
ducers components. Furthermore, the mechanical loss
power which is attributed to the joint losses from pla-
nar friction losses between piezoelectric rings and other
components (baking and center mass) in Type A trans-
ducer are more than those of Type B transducers. As
Table 2 shows, Rm that relates to dissipative power loss
for Type A transducers more than Type B transducers.

As shown in Figs. 13 to 16, there is a good agree-
ment between the experimental and FEM results for
the displacement distribution along longitudinal axis
of transducer for all transducers.

6. Conclusions

In this study, two configurations of the piezoelectric
ultrasonic transducer with two resonance frequencies
were analyzed by theoretical, numerical, and experi-
mental methods and four transducers were developed
and tested. The study presented in this paper con-
cludes:

1. It was found that the analyzed transducers have
two resonance frequencies that correspond to the
half-wave and the all-wave vibrational modes.

2. Comparison of the results obtained from FEM
simulation proved that there is a good agreement
between the results achieved from the analytical
and the FEM modeling.

3. It can be seen from the Table 2 compared with
measured frequency, there is a small difference
between resonance frequencies obtained from the
analytical and the FEM modeling. The reason
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of this error may be due to simplifying presump-
tion of one-dimensional wave propagation along
the transducer and the ignorance of pre-stress of
piezoelectric transducer and the mechanical loss
power attributed to the joint losses from planar
friction losses between piezoelectric and metal
parts and to the material hysteretic-related losses
(internal mechanical damping in all transducer
parts).

4. There is a good agreement between the experi-
mental and FEM results for the displacement dis-
tribution along longitudinal axis of transducer.

5. As shown in the Table 2 that use of type B trans-
ducer increased the mechanical quality factor (Q)
of dual piezoelectric transducers.

6. There is a possibility of achieving the various sec-
ond resonance frequencies with same first reso-
nance frequency by using different center mass
material.

7. The results obtained are showing that the capa-
bilities of the ANSYS software can be used suc-
cessfully as a powerful and reliable tool for pre-
diction of behavior of multifrequency piezoelec-
tric transducers.
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