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Abstract

In this paper, analytical and numerical solutions for thermoelastic functionally
graded (FG) rotating disks with non-uniform thickness under lateral pressure
are studied. The study is performed based on Mindlin’s theory. Considering
the fact that bending and thermal loadings in analysis of rotating disk are
necessary to study the components such as brake and clutch disks. The
governing differential equations arising from FG rotating disk are firstly
extracted. Then, Liao’s homotopy analysis method (HAM) and Adomian’s
decomposition method (ADM) are applied as two analytical approaches.
Calculation of stress components and then comparison of the results of
HAM and ADM with Runge-Kutta’s and FEM are performed to survey
compatibility of their results. The distributions of radial and circumferential
stresses of rotating disks are studied and discussed. Finaly, the effects
of temperature, grading index, angular velocity and lateral loading on the
components of displacement and stresses are presented and discussed, in detail.

Nomenclature

a Inner radius A Integral constants
b Outer radius B Integral constants
E Young’s modulus h(r) Thickness profile
Hi Auxiliary functions ~i Auxiliary parameters
K Correction factor Li Linear operators
Mr,Mθ Radial and hoop stress couples per unit

length
Nr, Nθ Radial and hoop stress resultants per unit

length
Ni Nonlinear operators nT Exponent in thermal distribution
nE Grading index in Young modulus dis-

tribution
nqz Exponent in transverse loading distribu-

tion
nα Grading index in thermal expansion co-

efficient distribution
nρ Grading index in mass density distribu-

tion
q Embedding parameter Qr Transverse shear resultant per unit length
qz Transverse loading T Temperature gradient
U Total strain energy ∆r Radial increment in Runge-Kutta method
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V Total external work Yi,m Adomian’s polynomials
α Thermal expansion coefficient ν Poisson’s ratio
u0 In-plane radial displacement of the mid-

plane
ur, uz = w Radial and vertical displacements

εr, εθ, γrz Radial, hoop and transverse shear
strains

σr, σθ, σrz Radial, hoop and transverse shear
stresses∏

Total elastic potential energy ρ Mass density
φi, i =
1, 2, 3

Unknown functions in homotopy anal-
ysis method

ϕ Rotation of a transverse normal in the
plane θ=constant

ψ General unknown function in Runge-
Kutta’s method

w Angular velocity

1. Introduction

Rotating disks are used in many practical applica-
tions such as steam and gas turbines, brake disks, and
clutches. Brake disk and clutch are examples of rotat-
ing disks where body force and thermal and bending
loading are involved. In gas turbine rotors, it is the
pressure difference across the rotors that causes bend-
ing. In clutches and brakes, the force responsible for
maintaining contact between the plates causes bending.
These examples emphasize on the role of bending in de-
sign of rotating disks [1]. Application of variable thick-
ness rotating disks is expanding chiefly for the sake of
the economic consideration and practical optimization
of mechanical performance [2].

For analytical solutions of rotating disks of uniform
thickness, a closed-form solution is available. However,
there is no straightforward solution to non-uniform ro-
tating disk of variable properties.

Eraslan and Orcan [2] introduced an acceptable
theoretical solution for rotating disks of exponen-
tially variable thickness and linear hardening mate-
rial without considering bending loading. Kordkheili
and Naghdabadi [3] and Bayat et al. [4] presented a
semi-analytical thermoelastic solution for functionally
graded rotating disks with no bending loading. In re-
cent years, Hojjati and Jafari [5, 6, 7] studied the elas-
tic and elastic-plastic analyses of non-uniform thickness
and density rotating disk by the variational iteration,
homotopy perturbation and Adomian’s decomposition
methods. It is worth mentioning that in [7], the bi-
linear material and Tresca’s yield criterion were uti-
lized. Hojjati and Hassani [8] used the variable mate-
rial properties technique to analyze variable thickness
and density rotating disks with no lateral pressure by
applying Von-Mises’s yield criterion. Hassani and Ho-
jjati [9] used variational iteration, Adomian’s decom-
position and homotopy analysis methods to solve the
thermo-elastic analysis of FG rotating disk with vari-
able thickness. Then, Hassani et al. [10] applied ho-
motopy analysis method to analyze the non-uniform
functionally graded thermo-elasto-plastic rotating disk
by the bilinear material model and Von-Mises’ yield
criterion. Hassani et al. [11] also applied the variable
material properties technique, Runge-Kutta’s and fi-

nite element methods to analyze non-uniform thickness
and material properties of rotating disks under thermo-
elasto-plastic loading by using Von-Mises’s yield crite-
rion.

An investigation of in-plane free vibration of non-
uniform thickness annular elliptic and circular elastic
plates for all classical boundary conditions have been
presented [12]. It is worth mentioning that in above-
mentioned references, any bending effect has excluded.
In the other words, the existent literatures of bending
analysis of rotating disk are few.

Bayat et al. [1] studied bending analysis of FGM
rotating disk under only centrifugal loading (with no
thermal loading) by using semi-theoretical method of
division of the disk into the number of sub-domains in
radial direction.

In the beginning of the 1980s, Adomian [13]
proposed so-called Adomian’s decomposition method
(ADM) for solving non-linear differential equations,
while Liao in 1992 employed homotopy analysis
method (HAM) to solve non-linear differential equa-
tions [14].

In recent years, Hosseini Kordkheili and Livani [15]
studied thermoelastic creep behavior of a function-
ally graded rotating disk with varying thickness whose
material properties were dependent on the tempera-
ture. Bayat et al. [16] investigated the magneto-
thermo-mechanical response of a functionally graded
annular variable-thickness rotating disk. The effects of
the magnetic field, grading index and geometric non-
linearity on the mechanical and thermal stresses of the
annular disk were investigated. Ting and Hong-Liang
[17] have been performed a thermo-elastic analysis of a
functionally graded rotating annular disk with variable
thickness rotating with an angular acceleration under
a changing temperature field. The material properties
were assumed to vary along the radial coordinate and
related to the volume fraction of each material. The
modulus of elasticity and the coefficient of thermal ex-
pansion were supposed to be temperature-dependent,
while the Poisson’s ratio was assumed to be constant.
Also, Ting and Hong-Liang [17] presented an inves-
tigation on a rotating functionally graded piezoelec-
tric material FGPM circular disk rotating around its
axis at a constant angular velocity under a coupled hy-

Analytical and Numerical Bending Solutions for Thermoelastic Functionally Graded Rotating Disks with
Non-uniform Thickness Based on Mindlin’s Theory: 35–49 36



grothermal field by finite difference method [18]. The
material properties were assumed to vary along the ra-
dial coordinate exponentially. An analysis of a rotating
functionally graded magneto-electro-elastic (FGMEE)
circular disk with variable thickness under thermal en-
vironment was done [19]. The material was a mixture
of piezoelectric (PE) and piezomagnetic (PM) materi-
als, and the material properties were assumed to vary
along the radius of the disk exponentially.

In this research, bending analysis of non-uniform
thickness and material properties rotating disk under
thermo-elastic loading based on first order shear de-
formation theory (Mindlin’s theory) is studied. This
study is undeniably required to comprehend how to
treat the components such as brake disk and clutch.
Firstly, the governing differential equations of FGM ro-
tating disk on displacement field are extracted. Two
analytical methods, namely HAM and ADM, are then
considered for solving these equations. Then, the
well-known Runge-Kutta’s (RK) and finite elemenet
method are performed to compare with suggested
methods. It is shown that there are good agreements
between the results of four methods.

2. Deriving Equations of Rotating Disk

Consider a moderately thick axisymmetric FG disk.
The disk rotates at the constant angular velocity w
and is subjected to an axisymmetric transverse load-
ing qz(r) under temperature gradient.

Table (1) presents the characterization parameters
defining the thickness profile h(r) and material prop-
erties to functionally graded rotating disk. In the fol-
lowing equation, the indices i and o in P , as a global
property, indicate the values of respective parameters
at the inner radius a and outer radius b. It is worth
mentioning that in the present paper, E,α, ρ, T , and
qz indicate Young’s modulus, thermal expansion coef-
ficient, mass density, temperature, and lateral pressure
respectively. Furthermore, according to many practi-
cal specimens, the inner radius of the disk is clamped
and the outer surface is free of any loading.

h(r) = h0

(r
b

)−nh

(1)

P (r) = (P0 − Pi)

(
r − a

b− a

)np

+ Pi (2)

2.1. Displacement Fields and Strains

The first-order shear deformation plate theory (FSDT)
is the simplest one that accounts for non-zero trans-
verse shear strain. It is based on the deformation fields
as [20]:

ur = ur(r, z) = u0(r) + zφ(r) (3a)

uz = uz(r, z) = w(r) (3b)

where u0 is the in-plane radial displacement of the
mid-plane. ur and uz are the radial and vertical dis-
placements respectively; φ = φ(r) denotes rotation of a
transverse normal in the plane θ = constant; w = w(r)
is the displacement along the thickness. Eqs. (3) yields
constant values for the transverse shear strains and cor-
responding stress distributions. Since the real stress
distribution in moderately thick plates is parabolic,
this assumption is incorrect. Furthermore, it fails to
satisfy the zero-stress condition on the top and bottom
surfaces of the plate. Consequently, it was necessary
to introduce a correction factor K, which was evalu-
ated by comparison with the exact elastic solutions.
Normally, the value of K is set equal to 5/6 [20].

The strain-displacement equations are calculated
by the following [20]:

εr =
∂ur
∂r

=
du0
sdr

+ z
dφ

dr
− αT, (4a)

εθ =
ur
r

=
u0
r

+ z
φ

r
− αT, (4b)

γrz = 2εrz =
∂ur
∂z

+
∂uz
∂r

= φ+
dw

dr
, (4c)

in which, εr and εθ are mechanical strains and not total
strains. It can be noted that

γrθ = εrθ = 0, γθz = εθz = 0, εz =
dw

dz
= 0·

The constitutive equations are applied as the following
[20]:

 σr
σθ
σrz

 =
E(r)

1− ν2

 1 ν 0
ν 1 0

0 0
1− ν

2


 εr

εθ
γrz

 (5)

Table 1
Characteristic parameters for the geometry, material properties and thermal loading.

Model a(m) b(m) h(m) w(rad/s) ν T (◦C) ρ(Kg/m3) α(1/◦C) qz(MPa) E(GPa)

h0 = 0.05 Ti = 150 ρi = 2700 αi = 23 × 10−6 qz,in = 1 Ei = 70

D 0.2 0.5 nh = 0.3 500 0.3 To = 400 ρo = 5700 αo = 10 × 10−6 qz,out = 1.4 Eo = 151
nT = 1 nρ = 1 na = 1 nqz = 1 nE = 1

The inner and outer surfaces of rotating disk are rich-metal and rich-ceramic, respectively [3].
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2.2. Equilibrium Equations

If U is the total strain energy and V is the total exter-
nal work done on the body by the external forces, then
the total elastic potential energy

∏
can be represented

as: ∏
= U − V (6)

The theorem of minimum potential energy is defined
as the following: Of all the displacements satisfying
compatibility and the prescribed boundary conditions,

those that satisfy equilibrium equations make the po-
tential energy a minimum [21,22].
The principle of minimum total potential energy ex-
pressed that δ

∏
= δ(U − V ) = 0, in which [20-22]:

δU =

∫ ∫
R

[∫ h
2

−h
2

(σrδεr + σrzδγrz + σθδεθ)dz

]
rdrdθ (7)

δV =

∫ ∫
R

(qzδw + ρrw2hδu0)rdrdθ (8)

If note to have axisymmetric geometry and loading,
Eqs. (7) and (8) are resulted in:

δ
∏

= δ(U − V ) (9)

= 2π

{∫ r2

r1

[
r ×

(
Nr

dδu0

dr
+Mr

dδφ

dr
+Qr

(
δφ+

dδw

dr

)
+Nθ

δu0

r
+Mθ

δφ

r

)
− r(qzδw + ρrw2hδu0)

]
× dr

}
= 0

where,

(Nr, Nθ, Qr) =

∫ h
2

−h
2

(σr, σθ, σrz)dz, (10)

(Mr,Mθ) =

∫ h
2

−h
2

(σr, σθ)zdz (11)

Nr = Nr(r), Nθ = Nθ(r) are the stress resultants per
unit length,
Mr = Mr(r), Mθ = Mθ(r) are the stress couples per
unit length,
Qr = Qr(r) is the transverse shear resultant per unit
length. The well-known Euler-Lagrange equations are
used for Eq. (9) and it will result in three following
differential equations:

δu0 : Nθ − ρr2w2h−Nr − r
dNr

dr
= 0 (12a)

δφ : Mθ + rQr −Mr − r
dMr

dr
= 0 (12b)

δw : qzr +Qr + r
dQr

dr
= 0 (12c)

And the following boundary conditions are obtained
from δu0, δφ, and δw, respectively:

ur = 0 OR Nr = 0 (13a)

φ = 0 OR Mr = 0 (13b)

w = 0 OR Qr = 0 (13c)

Substituting for σr, σθ, and σrz from Eq. (5) in to Eqs.
(10) and (11), one has:

Nr(r) =
Eh

1− ν2

(
du0

dr
− αT

)
+

Ehν

1− ν2

(u0

r
− αT

)
(14a)

Nθ(r) =
Eh

1− ν2

(u0

r
− αT

)
+

Ehν

1− ν2

(
du0

dr
− αT

)
(14b)

Qr(r) =
KEh

2(1 + ν)

(
dw

dr
+ φ

)
(14c)

Mr(r) =
Eh3

12(1− ν2)

(
dφ

dr

)
+

Eh3ν

12(1− ν2)

(φ
r

)
(14d)

Mθ(r) =
Eh3

12(1− ν2)

(φ
r

)
+

Eh3ν

12(1− ν2)

(
dφ

dr

)
(14e)

Substituting for various terms from Eqs. (14) in to
Eqs. (12) yields a set of three ordinary differential
equations for displacement fields as the following:

rE
d2u0
dr2

+
1

h

d

dr
(rEh)

du0
dr

+
1

h

(
ν
d

dr
(Eh)− Eh

r

)
u0

− r(1 + ν)

h

d

dr
(EhαT ) + (1− ν2)ρr2w2 = 0 (15a)

rE
d2φ

dr2
+

1

h

(
rh
dE

dr
+ 3rE

dh

dr
+ Eh

)
dφ

dr

− 6rKE(1− ν)

h2
dw

dr
+

1

rh2

(
h2
dE

dr
rν + 3hE

dh

dr
rν

− Eh2 − 6r2KE(1− ν)

)
φ = 0 (15b)

rE
d2w

dr2
+

1

h

d

dr
(rEh)× dw

dr
+ rE

dφ

dr

+
1

h

d

dr
(rEh)× φ+

2r(1 + ν)

Kh
qz = 0 (15c)

It may be noted that Eqs. (15) are different from the
one considered by Bayat et al. [1]. Unlike Ref. [1],
thermal loading, variations of thickness and of thermal
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expansion coefficient of the disk versus the radius have
been considered herein.

Eq. (15a) is independent of two other Eqs. (15b)
and (15c); However, Eqs. (15b) and (15c) are coupled
which are difficult even to solve by well-known Runge-
Kutta’s method. In order to overcome this problem,
the following strategy is continued:
Eq. (12c) is differentiated to derive Qr(r). This yields
to the following equation:

Qr(r) =

−
∫
rqz(r)dr + c1

r
(16)

where c1 can be determined by identifying the bound-
ary conditions of Qr(r) at inner or outer radii of the
disk.
By substituting Eq. (16) into Eq. (12b), one has:

Mθ −
∫
rqz(r)dr + c1 −Mr − r

dMr

dr
= 0 (17)

By substituting Eqs. (14d) and (14e) into Eq. (17),
one has the following equation:

rE
d2φ

dr2
+

(
h3r2

dE

dr
+ Eh3r + 3h2

dh

dr
Er2

)
rh3

dφ

dr

−

(
−h3rν dE

dr
− 3h2

dh

dr
Erν + Eh3

)
rh3

φ

+

12

(∫
rqzdr − c1

)
(1− ν2)

h3
= 0 (18a)

By substituting Eq. (16) into Eq. (14c), one has:

rE
dw

dr
+ rEφ+

2

Kh
(1 + ν)

(∫
rqzdr

)

− 2c1
Kh

(1 + ν) = 0 (18b)

As it is seen, Eqs. (15a) and (18a) are uncoupled and
are able to be individually solved. Eq. (18b) may be
solved by using the solution of φ(r) to obtain w(r).
In order to solve the mentioned differential equations
by means of analytical methods, they are rewritten as
the following:

d2u0
dr2

+
1

rEh

d

dr
(rEh)

du0
dr

+
1

rEh

(
ν
d

dr
(Eh)− Eh

r

)
u0

− (1 + ν)

Eh

d

dr
(EhαT ) +

(1− ν2)ρrw2

E
= 0 (19a)

d2φ

dr2
+

1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2

dh

dr
Er

)
dφ

dr

− 1

r2h3E

(
−h3rν dE

dr
− 3h2

dh

dr
Erν + Eh3

)
φ

+

12

(∫
rqzdr − c1

)
(1− ν2)

rEh3
= 0 (19b)

dw

dr
+ φ+

2

rEKh
(1 + ν)

(∫
rqzdr

)

− 2c1
rEKh

(1 + ν) = 0 (19c)

3. Solution of FG Rotating Disk

In this section, the procedure of solving FG rotating
disk subjected to lateral pressure through HAM, ADM
and Runge-Kutta’s method is presented.

3.1. Homotopy Analysis Method (HAM)

HAM is based on a continuous variation from an initial
trial to the exact solution. A Maclaurin series expan-
sion provides a successive approximation of solution
through repeated application of a differential operator
with initial trial as the first term [14]. Because of sav-
ing space, the background of HAM is not presented
herein. In order to introduce HAM, the audiences are
referred to Author’s papers [9,10] and [14].

Herein, the elastic equations of annular rotating
disks with variable thickness and material properties
subjected to lateral loading, defined by Eqs. (19) are
considered. To solve Eqs. (19) using HAM, the linear
operators Li, i = 1, 2, 3 corresponding to Eqs. (19a)-
(19c), respectively, can be chosen as:

Li[ϕi(r; q)] =
d2ϕi(r; q)

dr2
, For i = 1, 2

L3[ϕi(r; q)] =
d2ϕ3(r; q)

dr

(20)

where q ∈ [0, 1] is the embedding parameter and ϕi,
i = 1, 2, 3 are unknown functions corresponding with
u0(r), φ(r), w(r) respectively.
The following initial approximations can be chosen:

u0,0(r) = A1,0 +B1,0r

φ0(r) = A2,0 +B2,0r (21)

w0(r) = A3,0

in which Ai,0 and Bi,0 are determined using boundary
conditions.
By attention to Eqs. (19) and HAM algorithm, one
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can suggest the nonlinear operators as:

N1[ϕ1(r; q)] =
d2ϕ1(r; q)

dr2
+

1

rEh

d

dr
(rEh)

dϕ1(r; q)

dr

+
1

rEh

(
ν
d

dr
(Eh)− Eh

r

)
ϕ1(r; q)−

(1 + ν)

Eh

d

dr
(EhαT )

+
(1− ν2)ρrw2

E
(22a)

N2[ϕ2(r; q)] =
d2ϕ2(r; q)

dr2

+
1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2 dh

dr
Er

)
dϕ2(r; q)

dr

− 1

r2h3E

(
−h3rν

dE

dr
− 3h2 dh

dr
Erν + Eh3

)
ϕ2(r; q)

+

12

(∫
rqzdr − c1

)
(1− ν2)

rEh3
(22b)

N3[ϕ2(r; q), ϕ3(r; q)] =
dϕ3(r; q)

dr
+ ϕ2(r; q)

+
2

rEKh
(1 + ν)

(∫
rqzdr

)
− 2c1
rEKh

(1 + ν) (22c)

where Ni, i = 1, 2, 3 are nonlinear operators corre-
sponding with Eqs. (19a) to (19c), respectively.
In order to speed up the solution and reducing hard-
ware requisitions and based on the so-called rule of
solution existence [14], and Auxiliary functions Hi(r)
are considered in the following form:

Hi(r) =
1

r
, i = 1, 2, 3 (23)

The index i corresponds to Eqs. (19a) to (19b), respec-
tively. So, from here to end, Hi(r) denotesH(r) = 1/r.
The mth-order deformation equations are written as:

u0,m(r) = Xmu0,m−1(r) + ~1L−1
1 [H(r)R1,m(u0,m−1)]

(24a)

φm(r) = Xmφm−1(r) + ~2L−1
2 [H(r)R2,m(φm−1)]

(24b)

wm(r) = Xmwm−1(r) + ~2L−1
3 [H(r)R3,m(φm−1, wm−1)]

(24c)

Subject to the boundary conditions of:

u0,m(a) = 0, u0,m(b) = 0 for m ≥ 1

φm(a) = 0, φm(b) = 0 for m ≥ 1 (25)

wm(a) = 0, for m ≥ 1

where ~i, i = 1, 2 are auxiliary parameters with no

physical content and Xm =

 1, m = 1

0, m ≥ 2
.

From Eqs. (24), one can obtain the high-order ap-
proximation of the unknown functions u0(r), φ(r) and
w(r). Herein, one has to calculate Ri,m(m ≥ 1), i =
1, 2, 3.
Ri,m(m ≥ 1), i = 1, 2, 3 for u0(r), φ(r) and w(r), re-
spectively, are determined as the following:

R1,m(u0,m−1) =
d2u0,m−1

dr2
+

1

rEh

d

dr
(rEh)

du0,m−1

dr

+
1

rEh

(
v
d

dr
(Eh)− Eh

r

)
u0,m−1(r)

+ ζm

[
− (1 + v)

Eh

d

dr
(EhαT ) +

(1− v2)ρrw2

E

]
(26a)

R2,m(φm−1) =
d2φm−1

dr2

+
1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2

dh

dr
Er

)
dφm−1

dr

− 1

r2h3E

(
−h3rv dE

dr
− 3h2

dh

dr
Erv + Eh3

)
φm−1

+ ζm

12

(∫
rqzdr − c1

)
(1− v2)

rEh3

 (26b)

R2,m(φm−1) =
d2φm−1

dr2

+
1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2

dh

dr
Er

)
dφm−1

dr

− 1

r2h3E

(
−h3rv dE

dr
− 3h2

dh

dr
Erv + Eh3

)
φm−1

+ ζm
12

rEh3

(∫
rqzdr − c1

)
(1− v2) (26c)

in which, ζm =

 1, m = 1

0, m ≥ 2
.

By employing the selected linear operators
Li, i = 1, 2, 3, Eqs. (24) reduce to

u0,m(r) = Xmu0,m−1(r)

+ ~1
∫ ∫

(H(r)×R1,m)drdr +A1,m +B1,mr (26d)

φm(r) = Xmφm−1(r)

+ ~2
∫ ∫

(H(r)×R2,m)drdr +A2,m +B2,mr (26e)
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wm(r) = Xmwm−1(r)

+ ~2
∫ ∫

(H(r)×R3,m)drdr +A3,m (26f)

where A1,m, A2,m, A3,m, B1,m and B2,m are integral
constants which are determined by boundary condi-
tions of Eq. (25). It is worth mentioning that c1 is
determined by boundary condition of Qr at inner or
outer radii of the disk.
Finally, the mth-order approximations of u0, φ and w
can be expressed, respectively, as:

u0(r) ≈
i=m∑
i=0

u0,j(r)

φ(r) ≈
i=m∑

φi(r) (27)

w(r) ≈
i=m∑
i=0

wi(r)

Eqs. (27) is a family of solution expressions in terms
of auxiliary parameters. Coefficients, and are calcu-
lated by boundary conditions of the disk during the
process of solution. Different kinds of boundary con-
ditions for rotating disk, namely roller supported-free
boundary conditions, hinged-free boundary conditions
and clamped-free boundary conditions may be consid-
ered [23]. In this research, clamped-free boundary con-
ditions are considered. For clamped-free boundary con-
ditions, it can be expressed as [23]:

At r = a; u0 = 0, φ = 0, w = 0

At r = b; Nr = 0, Mr = 0, Qr = 0
(28)

By employing the boundary conditions (28) and using
Eqs. (27) for u0, φ, w and Eqs. (14a), (14c) and (14d)
for Nr, Qr and Mr, respectively, one can easily de-
termine the coefficients A1,0, A2,0, A3,0, B1,0, B2,0 and
c1. Herein, c1 is determined by boundary conditions of
outer radius of the disk.

In order to show the influence of ~i, i = 1, 2 on the
convergence of mth-order approximations (in Eqs. 27),
u0(r) and w(r) are first plotted versus ~i =, i = 1, 2, re-
spectively. The curves u0(r) versus ~i and w(r) against
~2 contain a horizontal line segment over the valid re-
gions. Liao called such kind of curve the ~-curve [14],
which clearly indicates the valid region of a solution
series. In general, by means of ~-curves, it is straight
forward to find the corresponding valid region of ~. By
choosing a value of ~ in the valid region, it can be
ensured that the corresponding solution series is con-
vergent to exact solution. In this way, one can con-
trol and adjust the convergence region and rate of so-
lution series. The ~-curve of u0(r) and φ(r) at the

mid-radius of rotating disk for 10th-order approxima-
tion of them are shown in Fig. 1 and Fig. 2, respec-
tively. From these figures, it is easy to discover that
the valid region of ~1 for the given rotating disk is
−0.45 ≤ ~1 ≤ −0.2 and by attention to Fig. 2, valid
region of ~2 is −0.4 ≤ ~2 ≤ −0.2. So, in this research,
the value of ~1 and ~2 are respectively selected -0.3 and
-0.27.

Fig. 1. ~1-curve of 10th-order approximation of u0(r)
at middle radius of model D obtained by HAM.

Fig. 2. ~2-curve of 10th-order approximation of φ(r)
at middle radius of model D obtained by HAM.

3.2. Adomian’s Decomposition Method (ADM)

ADM approaches any equation, linear or nonlinear in
a straight forward manner without any need to restric-
tive assumptions such as discretization or perturbation
[13]. Because of saving space, the background of ADM
is not presented herein. In order to acquaint ADM,
the audiences are referred to Author’s paper [9] and
[13,24].

Herein, the general governing Eqs. (19), for a
thermoelastc rotating disk with variable thickness and
material properties subjected to lateral pressure is to
be solved by ADM. In order to solve Eqs. (19),
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the linear operators Li, i = 1, 2, 3 corresponding to
u0(r), φ(r), w(r) can be respectively considered as:

L1[u0(r)] =
d2u0(r)

dr2

L2[φ(r)] =
d2φ(r)

dr2
(29)

L3[w(r)] =
dw(r)

dr

The initial approximations presented in Eqs. (21) are
also considered in ADM.
Considering Eqs. (19) and ADM algorithm, one can
suggest the nonlinear operators Ni, i = 1, 2, 3 corre-
sponding with u0(r), φ(r), w(r) respectively, as

N1[u0(r)] =
1

rEh

d

dr
(rEh)

du0
dr

+
1

rEh

(
ν
d

dr
(Eh)− Eh

r

)
u0 −

(1 + ν)

Eh

d

dr
(EhαT )

+
(1− ν2)ρrw2

E
(30a)

N2[ϕ(r)] =
1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2

dh

dr
Er

)
dφ

dr

− 1

r2h3E

(
−h3rν dE

dr
− 3h2

dh

dr
Erν + Eh3

)
φ

+
12

rEh3

(∫
rqzdr − c1

)
(1− ν2) (30b)

N3[φ(r)] = φ+
2

rEKh
(1 + ν)

(∫
rqzdr

)

− 2c1
rEKh

(1 + ν) (30c)

Now, Adomian’s polynomials Yi,m(m ≥ 0), i = 1, 2, 3
for u0(r), φ(r) and w(r) can be respectively determined
as the following equations:

Y1,m(u0,m) =
1

rEh

d

dr
(rEh)

du0,m
dr

+
1

rEh

(
ν
d

dr
(Eh)− Eh

r

)
u0,m

+ ζm+1

[
− (1 + ν)

Eh

d

dr
(EhαT ) +

(1− ν2)ρrw2

E

]
(31a)

Y2,m(φm) =
1

rh3E

(
h3r

dE

dr
+ Eh3 + 3h2

dh

dr
Er

)
dφm

dr

− 1

r2h3E

(
−h3rν dE

dr
− 3h2

dh

dr
Erν + Eh3

)
φm

+ ζm+1

12

(∫
rqzdr − c1

)
(1− ν2)

rEh3

 (31b)

Y3,m(wm) = ϕm + ζm+1

[
2

rEKh
(1 + ν)

(∫
rqzdr

)

− 2c1
rEKh

(1 + ν)

]
(31c)

In ADM, the higher terms of u0(r) are determined by
u0,m(r) = −L−1(Nu0,m−1), m ≥ 1. This manner can
be followed to obtain the higher terms of φ(r) and w(r).
Hence, one has:

u0,m(r) = −
∫ ∫

Y1,m−1(u0,m−1)drdr +A1,m +B1,mr

(32a)

φm(r) = −
∫ ∫

Y2,m−1(φm−1)drdr +A2,m +B2,mr

(32b)

wm(r) = −
∫
Y3,m−1(φm−1)dr +A3,m (32c)

where A1,m, A2,m, A3,m and B2,m are integral con-
stants which are determined by boundary conditions
of Eq. (25). It is worth mentioning that c1 can also
be determined by boundary condition of Qr at outer
radius of the disk.
By considering the disk model D (see Table 1), un-
known functions u0,m, φm and wm can be obtained by
substituting Eqs. (31) into Eqs. (32). Therefore, the
mth-order approximations of u0, φ and w can be ex-
pressed, receptively, as the Eqs. (27).
Herein, Eqs. (27) are the solution expressions. By im-
posing the boundary conditions (28) and using Eqs.
(27) to u0, φ and w(r) and Eqs. (14a), (14c) and (14d)
for Nr, Qr and Mr, respectively, one can easily deter-
mine the coefficients A1,0, A2,0, A3,0, B1,0, B2,0 and c1.

3.3. Runge-Kutta’s Method (RK)

To calculate Eqs. (19) by well-known Runge-Kutta’s
(RK) method, Eq. (19a), (19b) and (19c) must be
solved in turn. In order to have numerical solution,
the value of c1 of clamped-free boundary conditions
must be firstly obtained by the following equation:

c1 =

∫
rqz(r)dr at r = b (33)

For numerical solution, Eqs. (19a) and (19b) have to
be rewritten in the form of:

d2ψ

dr2
= f

(
r, ψ,

dψ

dr

)
(34)
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in which ψ is a general unknown function. Here means
u0 or φ which have the second order ordinary differen-
tial equations, i.e. Eqs. (19a) and (19b). In the RK
method, the following equations are to be used [25]:(

dψ

dr

)
i+1

=

(
dψ

dr

)
i

+
∆r

6
(K1 + 2k2 + 2k3 + k4) (35a)

ψi+1 = ψi +∆r

((
dψ

dr

)
i

+
∆r

6
(k1 + k2 + k3)

)
(35b)

where ∆r is step length in the radial direction of the
disk. The ki coefficients are calculated by

k1 = f

(
ri, ψi,

(
dψ

dr

)
i

)

k2 = f

(
ri +

∆r

2
, ψi +

∆r

2

(
dψ

dr

)
i

,

(
dψ

dr

)
i

+
∆r

2
k1

)

k3 = f

(
ri +

∆r

2
, ψi +

∆r

2

(
dψ

dr

)
i

+
1

4
∆r2k1,

(
dψ

dr

)
i

+
∆r

2
k2

)

k4 = f

(
ri +∆r, ψi +∆r

(
dψ

dr

)
i

+
1

2
∆r2k2,

(
dψ

dr

)
i

+∆rk3

)

(36)

Eq. (19c) is a first-order differential equation which its
solution by RK method needs to be proceeded by the
following algorithm.
Eq. (19c) has to be firstly rewritten as the following
equation:

dw

dr
= g(r, w, φ) (37)

For the first order differential equation, following equa-
tion is to be used [25]:

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4) (38)

where the ki coefficients are calculated from

k1 = ∆r(ri, wi, φi)

k2 = ∆rg

(
ri +

∆r

2
, wi +

1

2
k1, φi

)
k3 = ∆rg

(
ri +

∆r

2
, wi +

1

2
k2, φi

)
k4 = ∆rg(ri +∆r, wi + k3, φi)

(39)

It is worth mentioning that execution of the numerical
solution starts from the inner boundary with a trial

value of the first-order derivative of the unknown func-
tions (u0 and φ). The procedure proceeds in an it-
erative and incremental manner. Here, the unknown
functions can be determined by the boundary condi-
tions on the outer radius of the disk. Mr and (for u0
and φ, respectively) must be equal to zero at outer ra-
dius of the disk. In the next increment in the radial
direction with the step length ∆r, the unknown func-
tions and its first-order derivative at the new radius
can be obtained using Eqs. (35). The unknown func-
tion w, with initial value w = 0 may be easily obtained
by Eq. (38).

3.4. Finite Element Method (FE)

A finite element analysis of rotating disk with non-
uniform thickness and material properties is performed
using the commercial available software [26]. The ele-
ment SHELL181 was used to analyze the problem. It
is worthy to be said that SHELL181 is suitable for an-
alyzing thin to moderately-thick shell structures. It
is a four-node element with six degrees of freedom at
each node: translations in the x, y, and z directions,
and rotations about the x, y, and z-axes. SHELL181
is well-suited for linear, large rotation and large strain
nonlinear applications. The accuracy in modeling is
governed by the Mindlin’s first-order shear deforma-
tion theory [26].

It is noted that in the present study, the element
SHELL181 was used in the elastic zone to analyze the
bending of thin and moderately-thick rotating disks.
Fig. 3 shows the modeled rotating disk and imposing
associated loading and boundary conditions. As seen in
Fig. 3, in order to decrease CPU-time, the one-fourth
disk was modeled and then the associated boundary
conditions were imposed as will be next explained.

Fig. 3. Finite element model, meshing and imposing
boundary conditions (Real meshing is so much finer).

In order to impose loading and boundary condi-
tions, the disk rotates about central axis at constant
angular velocity, in addition, for the sake of one-fourth-
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modeled rotating disk, the symmetric boundary condi-
tions in two edges of the model at degree of zero and
π/2 radians were imposed. The inner radius of the disk
was clamped by constraining all degree of freedoms, i.e.
UX, UY, UZ, ROTX, ROTY and ROTZ. The outer ra-
dius of the disk, which is free of any traction, was held
unchanged. In order to achieve the adequate accuracy,
the disk was discretized into 100 segments in radial di-
rection. In each segment, the thickness and properties
of disk were assumed constant and corresponding to
their values at given radius defined by Eqs. (1) and
(2).

4. Results and Discussion

In this section, results from HAM and ADM are pre-
sented and compared with those obtained by Runge-
Kutta’s and finite element solution. Fig. 4 to Fig. 6
show the distribution of functions u0(r), φ(r) and w(r)
against disk radius resulted by HAM, ADM, RK, and
FEM for disk model D respectively.

Fig. 4. The distribution of function u0(r) obtained by
HAM, ADM, RK and FEM for model D.

Fig. 5. The distribution of function φ(r) obtained by
HAM, ADM, RK and FEM for model D.

Fig. 6. The distribution of function w(r) obtained by
HAM, ADM, RK and FEM for model D.

Fig. 7. Comparison of calculated stresses by HAM,
ADM, RK and FEM of model D at z = −h(r)/2.

Fig. 8. The distribution of u0(r) versus the radius of
the disk with respect to the angular velocity.
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Fig. 9. The distribution of w(r) versus the radius of
the disk with respect to the angular velocity.

Fig. 10. The distribution of u0(r) versus the radius
of the disk with respect to the temperature gradient.

Fig. 11. The distribution of w(r) versus the radius of
the disk with respect to the temperature gradient.

Fig. 12. The distribution of u0(r) versus the radius
of the disk with respect to the lateral pressure.

Fig. 13. The distribution of w(r) versus the radius of
the disk with respect to the lateral pressure.

Fig. 14. The distribution of u0(r) versus the radius
of the disk with respect to the grading index.
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Fig. 15. The distribution of w(r) versus the radius of
the disk with respect to the grading index.

Fig. 16. The radial stress versus the radius of the disk
with respect to the lateral pressure.

Fig. 17. The hoop stress versus the radius of the disk
with respect to the lateral pressure.

Fig. 18. The radial stress versus the radius of the disk
with respect to the grading index.

Fig. 19. The hoop stress versus the radius of the disk
with respect to the grading index.

Fig. 20. The hoop stress versus the radius of the disk
with respect to the angular velocity.
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Fig. 21. The hoop stress versus the radius of the disk
with respect to the angular velocity.

By using the solution of u0(r), φ(r) and and apply-
ing Eqs. (5), one can easily obtain the distributions of
components of stress. Fig. 7 presents the radial and
hoop stresses of disk model D at z = −h(r)/2, calcu-
lated by HAM, ADM, RK and FE methods. Fig. 4 to
Fig. 7 obviously display that the results of four meth-
ods are in excellent agreements. Therefore, it induces
that practiced methods have excellent ability of solving
the moderately thick functionally graded thermoelastic
rotating disks subjected to bending loading based on
the Mindlin’s theory.

In model D at z = −h(r)/2, the maximum stress
component is the radial stress occurring at inner ra-
dius of the disk. The radial stress continuously reduces
from the maximum point at inner radius to minimum
position at outer radius. By considering Fig. 7, it is
obvious that the hoop stress has its minimum value at
inner radius, while; its maximum value occurs at outer
radius of the disk. The hoop stress increases from inner
radius up to a position within the disk, then decreases
from that position up to another position within the
disk, and then again increases from the latter position
up to its maximum value at outer radius. It is worth-
while that the variations of hoop stress of model D
against those of radial stress are trivial. In addition,
it is necessary to notice that if there is no thermal
loading, the angular velocity leads to positive radial
and hoop stresses throughout the disk. Whereas, the
thermal loading alone causes the negative hoop stress
throughout the disk. As seen in Fig. 7, the circum-
ferential stress is negative throughout the disk due to
imposing both the angular velocity and thermal load-
ing, simultaneously. It means that in the special model
of the disk and loading (model D), presented in Table
(1), the influence of thermal loading is greater than
that of angular velocity to distribute the hoop stress of
the rotating disk.

As final words, it can be said that the implemen-

tation of the proposed methods demonstrates the ap-
plicability of the HAM and ADM to provide accurate
enough solution for a complicated case with no exact
solution.

Fig. 8 and Fig. 9 show the variations of u0 and
w with the changes of the angular velocity w of the
model D, respectively. Fig. 8 and Fig. 9 demonstrate
that the radial displacement of the middle surface of
the disk u0(r) increases with the increase in angular
velocity, whereas angular velocity plays no role in de-
termination of deflection w. This implies the fact that
the differential equations of u0(r) and w(r) are uncou-
pled due to linearity. In the other words, the unknown
functions u0(r) and w(r) are coupled if the govern-
ing differential equations are non-linear. Fig. 10 and
Fig. 11 show the influence of temperature on the ra-
dial displacement, u0, and deflection, w, respectively.
As seen in Fig. 10, the increase in temperature gives
rise to increase in radial displacement of mid-plane u0,
while the variations of temperature has no influence on
the deflection. This fact can be easily derived through
differential equations (15b) and (15c). The terms αT
doesn’t exist in the equations related to w and ϕ. In
the view of physical interpretation, when there are no
temperature gradients in thickness direction, it is not
expected any deflection. Fig. 12 and Fig. 13 display
the variations of radial displacement u0 and deflection
w against lateral pressure qz. As revealed in Fig. 12,
the lateral loading qz plays no role in radial displace-
ment of the middle surface of the disk. This is fully
comprehended due to the concepts of Mindlin’s theory
of plates. It is that the middle surface of the plate has
no stretch due to bending loading. As it can be seen
in Fig. 13, the increase in lateral pressure qz causes
increase in deflection w. Fig. 14 and Fig. 15 show the
role of grading index on the radial displacement, u0,
and the deflection, w. As seen, the increase in grading
index gives rise to decrease in both u0 and w. Fig. 16
and Fig. 17 display the influence of lateral pressure qz
on the radial and circumferential stresses, respectively.
As expected, the growth of lateral pressure leads to in-
crease in both components of stress. Fig. 18 and Fig.
19 present the effect of grading index on the radial and
circumferential stresses respectively. As it can be seen,
the increase in grading index results in decrease in ra-
dial and hoop stresses. It can be resulted from Fig. 14
and Fig. 15 related to the influence of grading index
on u0 and w. It is obvious that the increase in both
u0 and w are generally resulted in growth of both ra-
dial and hoop stresses. Fig. 20 and Fig. 21 show the
role of angular velocity on the radial and hoop stresses
respectively. As it can be expected, the increase in an-
gular velocity leads to increase in both radial and hoop
stresses.

It is worth mentioning that in order to clearly reveal
the effects of various parameters with the exception of
temperature on radial displacement u0, deflection w,
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radial and hoop stresses, the temperature and its ef-
fects are vanished. In the other words, the temperature
is only considered to derive Fig. 1 to Fig. 7 and Fig.
10 and Fig. 11.

5. Conclusions

In this paper, firstly, the governing differential equa-
tions of FGM rotating disk with variable thickness sub-
jected to thermo-elastic and bending loadings through
Mindlin’s first order shear deformation theory were ex-
tracted. Then, two methods, namely Liao’s homo-
topy analysis method (HAM) and Adomian’s decom-
position method (ADM) were applied to analyze the
moderately-thick rotating disk. Such a study is unde-
niably required to realize how to treat some compo-
nents such as brake disk and clutch. Comparing the
results obtained by two methods with those of Runge-
Kutta’s and finite element methods (FEM), the cor-
rectness and reliability of the proposed methods for
analysis of rotating disk were proven. With the help of
results obtained by four methods, the components of
stress were easily obtained by using calculated u0(r),
φ(r) and w(r) in HAM, ADM, RK and FEM. The
curves and its variations of radial and hoop stresses of
rotating disk were surveyed. For further investigation,
the effects of angular velocity, lateral pressure, tem-
perature and grading index on the radial displacement
of mid-plane of the disk, deflection and on the radial
and hoop stresses were demonstrated and discussed in
detail.
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