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Abstract

In the present research, an internal semi-elliptical surface crack in a FGM
thick-walled cylindrical vessel under internal pressure is assumed. The Poisson
ratio is constant throughout the vessel and the material is considered to be
isotropic with exponentially varying elastic modulus. The KI is calculated
using the BEM and FEM for different values of the relative depths of
crack and material gradients. The research results show that increasing the
E2/E1, decreases SIF and when E2/E1 = 10, the SIF of the FGM vessel is
often lower than the corresponding homogeneous vessel. It can be observed
that the relation between KI and internal pressure in FGM is linear as for
homogeneous materials, so that increasing internal pressure KI increase as
the same. The obtained results of BEM and FEM methods show that good
agreement between the results can be seen.

Nomenclature

a The major axe of the semi-elliptical crack b The minor axe of the semi-elliptical crack
Ab, Ai System matrices E Elastic modulus
Cij(y) Coefficient dependent on the local

boundary geometry at point y
Q Elliptical crack front shape coefficient

(square of the complete elliptical integral
of the second kind)

E1 Elastic modulus at the inner radius of
cylinder

E2 Elastic modulus at the outer radius of
cylinder

f, F A function and its radial integral fi Traction vector
FA
ij , F

1
ij , F

0
ij Radial integrals G Strain energy release rate

Gc Critical strain energy release rate I Identity matrix
KI SIF for opening mode KII SIF for shearing mode
KI Normalized SIF for opening mode KII Normalized SIF for shearing mode
K0 Nominal KI Nb Number of boundary nodes
Nit Number of interior nodes Nt Number of total nodes
ni Outward unit normal vector p Internal pressure
Ro The outer radius of cylinder r Distance r = |x− y on polar coordinat
R Coordinate of the radial basis function Ri The inner radius of cylinder
R,Ri Ancillary parameters in the radial inte-

gration method
s Ancillary parameters in the radial inte-

gration method
Uij Displacement fundamental solutions ui Displacement vector
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u Normalized displacement vector uj Body force
Vij Traction fundamental solutions Vb, Vi System matrices
x, y, z Cartesian coordinates x Field point
xA Application point xb Vector of unknown boundary data
t Thickness of cylinder Tij Traction fundamental solutions
y Source point yb Vectors of known data on the boundary
yi Vectors of known data on interior node node
Greek Symbols
ϕA
i , ϕ

k
i ,

ϕo
i

Coefficients in the approximation of the
normalized displacements

β Gradient parameter (the constant of ma-
terial non-homogeneity)

ΦA Radial basis function ν Poissons ratio
µ Shear modulus µ Normalized shear modulus
µtip Shear modulus at the crack-front φ Parametric angle of an elliptical crack
δij Kronecker symbol δ Distance to the crack-front
∆uξ,∆uη̇,
∆uγ

Crack-opening-displacements (CODs) ξ, η̇, γ Local coordinate system

Γ Boundary of a domain Ω Analyzed domain
Abbreviations
BDI Boundary-Domain-Integral BEM Boundary Element Method
BEs Boundary Elements BIs Boundary Integrals
CBT Corrected Beam Theory CCM Compliance Calibration Method
CG Crack Geometry CODs Crack Opening Displacements
CTOD Crack Tip Opening Displacement DI Domain Integral
DIs Domain Integrals FEM Finite Element Method
FGM Functional Graded Material FM Fracture Mechanics
LEFM Linear Elastic Fracture Mechanics LES Linear Elastic Solids
MG Material Gradient MGs Material Gradients
RBF Radial Basis Functions RIM Radial Integration Method
SIF Stress Intensity Factor SIFs Stress Intensity Factors
VCC Virtual Crack Closure WFM Weight Function Method
XFEM Extended Finite Element Method

1. Introduction

An FG material is a two-element composite defined
by a compositional gradient from one element to the
other. For instance, the FG ceramic/metal materials
which combine the advantages of ceramics and met-
als. The distribution of each material changes con-
tinuously with space variables, which introduces non-
homogeneity in the mechanical properties of these ma-
terials. Because of high mathematical complexity of
the arising governing partial differential equations with
non-constant coefficients, using analytical methods is
so difficult for crack problems in FGMs in complex ge-
ometrical and loading conditions so numerical meth-
ods have been developed for modeling these problems.
One of these methods is BEM. Although the BEM has
been successfully applied to homogeneous cylindrical
vessels, its application to FGM cylindrical vessels has
been very limited. The effects of material distribution
on KI in cylindrical vessels and structures have been
investigated from different methods. Seifi [1] applied
the WFM for determination of SIF with internal sur-
face cracks in an autofrettaged FG cylinders. Eshraghi
and Soltani [2] estimated SIF for FG cylinders with
internal circumferential cracks using the WFM.

Shaghaghi Moghaddam et al. [3] determined the
mixed mode for SIF of 3D surface cracks in FGM hol-
low cylinders and studied the effect of Poisson’s ratio
and elastic modulus, which were defined by an expo-
nential law in radial direction, on the SIF in detail. Af-
sar and Anisuzzaman [4] assumed a thick-walled FGM
cylinder with two diametrically opposed edge cracks
emanating from the inner surface; some numerical re-
sults of SIF were presented for different profiles of ma-
terial distribution in the FGM cylinder. Ootao et al.
[5] optimized the material distribution for the relax-
ation of thermal stresses in an FGM hollow sphere for
thermal stress relaxation using the analytical proce-
dure of a laminated hollow sphere model. They [6]
also considered an FGM hollow cylinder and optimized
the material distribution for thermal stress relaxation.
Saidi et al. [7] presented analytically solutions for de-
termination of displacement and stress components of
thick-walled spherical FG vessels.

In the other research [8] a new method to deter-
mine the fracture properties and shear modulus (G)
for carbon-polyester composite was introduced. The-
oretical studies to determine G were conducted using
three methods: CBT, CCM, and VCC Technique, and
obtained results were compared with the results from
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experimental and numerical attempts. EL-Desouky
and EL-Wazery [9] obtained Zirconia-Nickel FGMs by
powder metallurgy technique. Mixed-mode fracture re-
sponse of YSZ/Ni FGMs was examined utilizing the
three-point bending test and FEM. The obtained re-
sults indicated that the KI and KII for the FGM are
less than those for non-graded composite under mixed
mode loading conditions.

It is self-evident that the applications of FGM ves-
sels are widespread. Pressure vessels are widely used
in the aerospace, nuclear, chemical, and automobile in-
dustries. Due to this widespread use, vessels must op-
erate under extreme mechanical loadings; any failure
or fracture will be an irreparable disaster.

The opening mode SIF is calculated using the BEM
developed by Zhang et al. [10], which uses an advanced
BEM based on the boundary domain integral equation
formulation in conjunction with a meshless method.
Wearing and Ahmadi-Brooghani [11] studied the ap-
plication of the BEM for determination of KI in plate
bending problems. A number of case studies having
a range of plan forms, with different combinations of
boundary conditions, crack configurations, and load-
ing conditions were presented to illustrate the effec-
tiveness of the BEM for the fracture analysis of plates.
J-integral, displacement extrapolation, quarter point,
and stress extrapolation were some methods used to
determine the SIF. The BEM results for the case stud-
ies considered in the paper were compared with either
analytical or FEM results and a good agreement was
achieved.

The performance of several super convergent tech-
niques to extract KI from computed numerical solu-
tions with the generalized FEM was investigated by
Pereira and Duarte [12]. In the other study, Purbolak-
sono et al. [13] studied the normalized SIF for multiple
semi-elliptical surface cracks on two surfaces (inner and
outer) of tubes containing oxide scale on inner part.
Tubes were subjected to internal pressure.

Barroso et al. [14] investigated an efficient post-
processing procedure for the evaluation of multiple
generalized KI in multi-material corners according to
BEM. The procedure is based on a simple least squares
fitting using numerical results of displacements and
stresses along boundary edges and the common edges of
the wedges in a multi-material corner. A new extended
dual BEM was presented by Alatawi and Trevelyan [15]
in which the enrichment functions are based closely
on the KI in LEFM theory for 2D conditions. The
method is able to evaluate SIF directly without any
requirement of post-processing calculations such as the
J-integral. Tutuncu and Ozturk [16] studied exact
solution of deformation and stress in FGM spherical
and cylindrical vessels under internal pressure. It was
shown that having higher stiffness or elastic modu-
lus near the inner surface leads to decrease in stresses
through the wall thickness [16]. Horgan and Chan

studied FGM shallow discs and cylinders with inter-
nal pressure with limited length [17].

Jabbari et al. [18] presented analytical solution
for the calculation of the axisymmetric thermal and
mechanical stresses in an FGM thick hollow cylinder.
Ghasemi et al. [19] studied an FGM cylindrical shell
reinforced by laminated composite subjected to inter-
nal pressure. In the other research, Elastic analysis
was performed for two thick walled FGM spherical and
cylindrical vessels by Chen and Lin [20]. The prop-
erty of FGM was assumed to be in exponential func-
tion form. Abrinia et al. [21] presented new method
for analysis of FGM thick-walled cylinders under com-
bined thermal and pressure loading. It was assumed
that elastic modulus and the coefficient of thermal ex-
pansion in FG materials in thickness direction is in ex-
ponential function form and Poissons ratio is constant.

It is observed, there is a limited amount of literature
available on the application of BEM in cracked FGM
cylindrical vessels. Therefore, in the present work, an
FGM thick-walled cylindrical vessel with semi-elliptical
surface crack under internal pressure is considered,
also, Poissons ratio is constant throughout the material
[21] and the material is assumed to be isotropic with
exponentially varying elastic modulus [20].

2. The Boundary Domain Integral
(BDI) Equations

For an isotropic, non-homogeneous and linear elastic
solid with elastic modulus E(x) dependent on Carte-
sian coordinates and the constant Poisson’s ratio, The
BDI equations can be written as [10]

ui(y) =

∫
Γ

Uij(x, y)fj(x)dΓ−
∫
Γ

Tij(x, y)uj(x)dΓ

+

∫
Ω

Vij(x, y)uj(x)dΩ (1)

where, Uij is displacement fundamental solution, and
Vij , Tij are traction fundamental solutions respectively;
Ω and Γ are the analysis and the boundary of domains
respectively. Furthermore, ui(x) and fi(x) are dis-
placements and tractions at point p on boundary Γ;
x and y denote the source point and the field point
respectively. The functions of ui(x) and µ(x) are the
normalized displacements and shear modulus respec-
tively, which can be shown as below:

ui(x) = µ(x) · ui(x) (2)

µ(x) = lnµ(x) (3)

where µ(x) is the shear modulus which can be written
in terms of elastic modulus as

µ(x) =
E(x)

2(1 + v)
(4)
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The fundamental solutions in Eq. (1) are expressed as
[10]

Uij(x, y) =
1

16π(1− v)r

[
(3− 4r)δij + rirj

]
(5)

Tij(x, y) = − 1

8π(1− v)r2
×

[
(1− 2ν)(nirj − njri) +

(
(1− 2ν)δij + 3rirj

)
r1n1

]
(6)

Vij(x, y) = − 1

8π(1− v)r2
×

[
(1− 2ν)(µirj − µjri) +

(
(1− 2ν)δij + 3rirj

)
r1µ1

]
(7)

It is noteworthy that Uij(x, y) and Tij(x, y) are the es-
sential solutions for the corresponding homogeneous,
isotropic, and linear elastic solid [22,23], because such
essential solutions are not yet available for general
FGM. Eq. (1) gives the displacement at any internal
point when fj and are known at every boundary point
and consequently when the boundary value problem is
solved, the values at the internal points can be evalu-
ated. However, since Eq. (1) is valid for every point
in Ω including Γ, boundary domain integral equations
can be obtained by letting y → Γ in Eq. (1), thus for
boundary points Eq. (1) is written as below:

Cij(y)uj(y) =

∫
Γ

Uij(x, y)fj(x)dΓ−
∫
Γ

Tij(x, y)uj(x)dΓ

+

∫
Ω

Vij(x, y)uj(x)dΩ (8)

where, Cij(y) is a Coefficient dependent on the local
boundary geometry at point y.

3. Discretization and Solution of the
BDI Equation

In order to solve the integral equations numerically, the
boundary must be discretized into a series of elements
over which displacements and tractions are written in
terms of their values at a series of nodal points. The
discretized form for the Eq. (1) without the domain
integral is written as [24]

u(y) =

NE∑
j=1

{∫
Γj

U∗(x(ξ, η), y)N(ξ, η)J(ξ, η)dξdη

}
F j

−
NE∑
j=1

{∫
Γj

T ∗(x(ξ, η), y)N(ξ, η)J(ξ, η)dξdη

}
U j (9)

where U∗ = [Uij ] and T ∗ = [Tij ], U
j , F j are the ele-

ment nodal displacements and tractions in the element
‘j’ respectively, N(ξ, η) is the matrix of shape func-
tions, J(ξ, η) is the Jacobean and (ξ, η) are the local

coordinates. But this method cannot be applied on the
domain integral in Eq. (1), in fact the main problem to
the numerical solution of the boundary domain integral
(BDI) equations is how to evaluate the domain integral
in Eq. (1). One of the methods used for this purpose
is the RIM of Gao [25,26], by this method the domain
integral is transformed into the boundary integrals. It
is observed that the direct transformation of domain
integrals to the boundary is mathematically difficult.
However, the direct transformation for domain inte-
grals containing unknown quantities is unfeasible. So
the normalized displacements in the domain integral
of Eq. (1) must be estimated. For this purpose, the
Radial Basic Functions are used [27]. Thus, the nor-
malized displacements u(x) are approximated by

ui(x) =
∑
A

ϕA
i φ

A(R) + ϕk
i xk + ϕ0

1 (10)

∑
A

ϕA
i = 0 (11)

∑
A

ϕA
i x

A
j = 0 (12)

where R = |x − xA| is the distance between point A,
x, also, ϕA

i , ϕ
k
i are coefficients to be determined, and

xA denotes the coordinates at the application point A.
The application points include all boundary nodes and
some selected internal nodes. In this study, the follow-
ing cubic Radial Basic Functions (RBFs) were used.

φA(R) = R2 (13)

The coefficients, φA
i and φk

i , in the above equations can
be calculated by collocating the application point A in
Eq. (10) at every node. A set of algebraic equations
can be written together with Eqs. (11) and (12) in the
matrix form as follows

u = φ−1ϕ (14)

where {ϕ} is a vector including the coefficients φA
i and

φk
i at all application nodes {u} and is a vector includ-

ing the values of the normalized displacements at all
nodes. when no two nodes share the same coordinates,
the matrix [φ] is invertible and therefore

ϕ = φu (15)

Using Eq. (10), the domain integrals consisting of
Vij , uj can be written as:∫

Ω

Vij(x, y)uj(x)dΩ =
∑
A

ϕA

∫
Ω

Vij(x, y)Φ
4dΩ

+ ϕk

∫
Ω

Vij(x, y)xkdΩ+ ϕ0

∫
Ω

Vij(x, y)dΩ (16)
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The integrals of Eq. (16) using RIM can be trans-
formed into boundary integrals as follows:∫

Ω

Vij(x, y)u(x)dΩ =
∑
A

ϕA

∫
Γ

FA(x, y)

rϕ(x, y)

∂r

∂n
dΓ

+ ϕk

∫
Ω

rkF
1
ij(x, y)

rϕ(x, y)

∂r

∂n
dΓ + (ϕkxk + ϕ0)

∫
Γ

F 0
ij(x, y)

rϕ(x, y)

∂r

∂n
dΓ

(17)

where

FA
ij =

∫ r

0

r2Vijφ
Adr (18)

F 1
ij =

∫ r

0

r3Vijdr (19)

F 0
ij =

∫ r

0

r2Vijdr (20)

Since FA is the function of the distance R, FA needs
to be first expressed in terms of r, the distance from
the source point p to the field point Q, which can be
written as

R =

√
r2 = sr +R

2
(21)

where

s = 2riRi, R = ||y − xA|| =
√
RiRi, Ri = yi − xA

i

(22)

It should be noted that the integral singularities in
the domain integral will be removed using the RIM
[19]. By applying Eqs. (1) and (8) at all internal and
boundary points respectively and after considering the
boundary conditions the following system of linear al-
gebraic equations is produced [10]. It is assumed that
the BEM model includes Nb and Ni.

Ab · xb = yb + Vb · u (The boundary nodes) (23)

ui +Ai · xb = yi + Vi · u (The internal nodes) (24)

where u is consisting of the unknown normalized
boundary displacements with all normalized internal
displacement and xb is consisting of the unknown nor-
malized boundary displacements (the unknown bound-
ary traction). To solve system of equations it needs to
express it in the following form [10]([

Ab 0
−Ai I

]
−

[
Vb

Vi

]){
xb

ui

}
=

{
yb
yi

}
(25)

where ui is consisting of the normalized internal dis-
placements. When Eq. (25) is solved numerically, it
gives the boundary and internal values. To obtain the
true displacements, Eq. (2) is used.

4. SIF Evaluation

Considering the asymptomatic crack-tip field for con-
tinuously non-homogeneous, isotropic and LES, the
SIFs can be obtained from crack opening displacements
(CODs) as [27,28], KI

KII

KIII

 =
µtip

√
2π

4(1− v)
lim
δ→0

1√
δ

 ∆uξ(δ)
∆uη(δ)

(1− v)∆uγ(δ)


(26)

where the KI and KII are opening and shearing modes
SIF, ∆uξ, ∆uη and ∆uγ are the CODs in the local co-
ordinate system, is a distance of the node on the crack
surface from the crack front, is the shear modulus at
the crack-front.

5. Numerical Analysis and Results

As shown in Fig. 1, an internal longitudinal semi-
elliptical surface crack in an FGM pressurized thick-
walled cylinder is loaded under internal pressure. The
crack geometry is followed by two dimensionless pa-
rameters, the aspect ratio (a/c) and relative depth of
crack (b/t), as shown in Fig. 2.

Fig. 1. Semi-elliptical surface crack in an FGM pres-
surized thick-walled cylinder.

Fig. 2. The geometry parameters of semi-elliptical
surface crack in an FGM pressurized cylinder.

The elastic modulus is calculated by an exponential
law:

E(r) = E1e
β(r−Ri) (27)
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where β defined as:

β = t−1 ln

(
E2

E1

)
(28)

For simplification, in this study, the Poisson’s ratio
is assumed constant throughout the cylinder and it is
taken as v = 0.25. For all geometries, the ratio of crack
length to cylinder length (a/l) equal to 0.1. Because of
the symmetry, only 1/4 of the cylinder needs to be dis-
cretized. For the vessel boundary, 8-node quadrilateral
boundary elements are used. The used BEM mesh is
illustrated in Fig. 3. At the crack-front, discontinuous
8-node quadrilateral boundary elements are adopted as
shown in Fig. 4.

Fig. 3. BE model and discretization of the crack-
surface.

Fig. 4. Discontinuous 8-noded quadrilateral elements
at the crack front.

5.1. Boundary Conditions

Symmetry boundary conditions are applied to the
X = 0, Y = 0, Z = 0 and the Y = l plane is con-
strained in the Y -direction and internal pressure is ap-
plied to the crack surfaces as shown in Fig. 5 that is
symmetric about the Z = 0 plane. The element num-
bers are 451, the total node numbers on boundary are
1355 and the internal nodes numbers are 250. The

analyses were carried out by MATLAB codes. The KI

are shown in the Figs. 6a-6d and follow as:

KI =
KI

K0
(29)

in which K0, Q is approximated by

K0 =
PRi

t

√
πb

Q
(30)

Q = 1 + 1.464

(
b

a

)1.65

(31)

Moreover, the normalized values for CTOD in di-
rection of crack regime for cylinder of FGM with
t/Ri = 0.5, b/a = 0.5 and b/t = 0 is illustrated in
Fig. 7. It is provided that the maximum SIF occurred
in φ = 0, therefore, the study of effect of the gradient
of the SIF at this points is important. Fig. 8 shows
SIF versus material gradient at φ = 0. For study ef-
fect of pressure, KI in several pressures is calculated in
φ = 90, whose results are shown for homogenous vessel
and FGM with several of material gradient in Fig. 9.

Fig. 5. A semi-elliptical surface crack in a cylinder
under loading.

In this study, a semi-elliptical surface crack was
assumed in an FGM thick-walled cylindrical pressure
vessel under internal pressure. The Poisson’s ratio was
considered to be constant with a value of 0.25 through-
out the cylinder. TheKI as a function of φ for an FGM
and corresponding homogeneous cylinder, are shown
in Figs. 6a-6d. For homogeneous cylinder, the ob-
tained results were compared with those reported by
Chai Guozhong et al. [28] and good agreement for
both cases was observed. Different values of relative
depths of crack and material gradients (E2/E1) were
applied. The ratio of wall thickness to cylinder inner
radius was 0.5, the aspect ratio was 0.5, the analyzed
relative depth of crack ranged from 0.2 to 0.8 and the
material gradient was 0.2, 5 and 10.
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Fig. 6. The along the crack front with t/Ri = 0.5, b/a = 0.5 and different values of the crack depths; a)
b/t = 0.2; b) b/t = 0.4; c) b/t = 0.6; d) b/t = 0.8.

Fig. 7. A semi-elliptical surface crack in a cylinder
under Loading.

Fig. 8. The KI versus material gradient at φ = 0.
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Fig. 9. The KI versus internal pressure of vessel in
b/t = 0.2 (BEM).

6. Vessel Modeling in Software

For modeling and analysis of vessel, XFEM in
ABAQUS software was applied and due to symmetrical
geometry and loading, a quarter of vessel was applied
to appropriate boundary conditions; the elastic mod-
ulus and Poissons ratio were considered. Assembled
model with crack is shown in Fig. 10.

Fig. 10. Internal pressure and boundary conditions
on model.

It is important that in the models with crack, ele-
ments in crack tip should be small enough to be chosen.
Therefore, to increase accuracy, meshing size around
crack region must be fine and for other points on vessel,
coarse mesh was considered. Figs. 11, 12 show mesh
around crack and applied internal pressure and bound-
ary conditions. In this section, the KI was investigated
in several points on crack regime. The SIF parameter
was calculated for nodes located on stress regime. Ap-
plied force in this procedure, was statically force with
0.1 second step time. Also, total time for analyses was
equal to 1 second. In the present research, the analysis
of nonlinear static was considered. The FGM prop-
erties were programmed in MATLAB software. The
obtained numerical results for stress and displacement
Countors are shown in Figs. 13, 14.

Fig. 11. Internal pressure and boundary conditions
on model.

Fig. 12. Meshing around crack in vessel.

Fig. 13. The Von Mises stress countor around crack
tip.

Fig. 14. The displacement countor around crack tip.

The ABAQUS software numerical analysis is based

Evaluation of SIF in FGM Thick-walled Cylindrical Vessel: 57–68 64



on finite element method, and the accuracy of the
method depends on the convergence of the meshing,
the element type, and the degrees of freedom of nodes.
But in boundary element method, for numerical anal-
ysis the integral equation governing the system and
the boundary of system must be discretized into a se-
ries of elements, so for each element displacement and
surface forces are determined based on the number of
nodal points. If the discrete form of governing equa-
tion is written for each node at the boundary, then a
linear equations of system is obtained, which by apply-
ing boundary conditions, these equations can be solved
and unknown values are determined.

In extended FEM, phantom nodes are used for anal-
ysis of fracture, which were assigned no displacement
or any other physical variables and so became, in eect,
just extra storage space for the physical nodes with no
reection in reality [29].

Due to the advantages of extended finite element
method in crack analysis, and also, the simplicity and
non-limitation of this method, therefore, in present re-
search, for functional graded material analysis, XFEM
was selected. In the numerical analysis of vessel, it
was tried tried to create the fine mesh size so that the
answers converge enough, also, the results for homoge-
neous vessel compared to the results of Guozhong et al.
[28] show that the same dimensions and specifications
were selected. The obtained results for two studies had
good agreement, so the mesh size was considered to be
the same for the functional graded material. Consid-
ering that this present research was conducted for the
first time for FGM pressure vessel, therefore, there was
no reference for E2/E1 = 1.0, steel homogenous vessel

(the normalized SIF on crack regime versus φ). the ob-
tained results from ABAQUS software were compared
to Guozhong et al. results and it is shown in Table.
1. Also, the SIF on crack regime versus φ for different
internal pressure is illustrated in Table 2.

The ratio thickness for internal radius of vessel was
equal to 0.5 and crack relative depth, the values of
0.2-0.8 with increment of 0.2 and also the manner of
material distribution was equal to 0.2, 5, 10. The nu-
merical results indicate that maximum SIF take place
in φ = 0, and the effect of internal pressure on SIF
for E2/E1 = 0.2, 1, 5, 10 is shown in Fig. 15. Also,
the normalized KI versus for FE and BE methods are
shown in Figs. 16-19.

Fig. 15. KI in direction of crack regime, b/t =
0.2, b/a = 0.5, t/Ri = 0.5. (FEM)

Table 1
Comparison of the normalized SIF on crack regime versus φ.

b/t
φ 0.2 0.4 0.6 0.8

Guozhong ABAQUS Guozhong ABAQUS Guozhong ABAQUS Guozhong ABAQUS
5 1.464 1.226 1.541 1.303 1.476 1.714 1.950 1.712
10 1.450 1.250 1.506 1.306 1.445 1.645 1.837 1.637
30 1.518 1.354 1.550 1.356 1.467 1.661 1.887 1.633
50 1.645 1.425 1.650 1.428 1.525 1.747 1.924 1.702
70 1.731 1.465 1.720 1.454 1.550 1.816 2.039 1.773
90 1.760 1.489 1.743 1.472 1.571 1.842 2.100 1.829

Table 2
The SIF on crack regime versus for different internal pressure (The obtained results ABAQUS software).

Internal Pressure (Mpa)
φ 5 10 15 20 25 30
5 30.30342 60.60683 90.91025 121.2137 151.5171 181.8205
10 30.01363 60.02726 90.04089 120.0519 150.0681 180.0818
30 31.42116 62.84233 94.26319 125.6847 157.1056 188.5270
50 34.04994 68.09989 102.1428 136.1998 170.2497 204.2997
70 35.83006 71.66013 107.4902 143.3203 179.1503 214.9804
90 36.43034 72.86067 109.2910 145.7213 182.1517 218.5820
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Fig. 16. Comparison of KI in direction of crack
regime, b/t = 0.2, b/a = 0.5, t/Ri = 0.5.

Fig. 17. Comparison of KI in direction of crack
regime, b/t = 0.8, b/a = 2, t/Ri = 0.5.

Fig. 18. Comparison of KI in direction of crack
regime, b/t = 0.4, b/a = 1, t/Ri = 0.5.

Fig. 19. Comparison of KI in direction of crack
regime, b/t = 0.6, b/a = 1.5, t/Ri = 0.5.

7. Conclusions

One of the most important applications of FGM is as
initial material in the manufacturing of vessels. Frac-
ture study is very important in FGM vessels because
of various usage in different industries. Since these
vessels could have cracks that have been occurred dur-
ing the manufacturing process, there is often fracture
probability. One of the important parameters in frac-
ture study is estimation of SIF, which is a controllable
parameter in evaluation of the critical state of crack.
In the present work, a semi-elliptical surface crack in
an FGM thick-walled cylindrical vessel under internal
pressure was assumed. The Poisson’s ratio was con-
stant throughout the vessel and the material proper-
ties were considered to be isotropic with linear elastic
behavior.

The elastic modulus varies exponentially in the ra-
dial direction. The opening mode SIF is estimated by
the boundary element method with different values of
crack depths and crack lengths which all equations have
been programmed in MATLAB software. Because of
non-homogeneous nature of FGM, the boundary ele-
ment formulation contains the domain integral. To
transform the domain integral into boundary integrals,
a meshless method was applied, which doesn’t require
the discretization of vessel but it needs additional in-
terior nodes instead of interior cells or meshes. Fi-
nally, effect of internal pressure, the manner of material
distribution and crack geometry on KI were studied.
In the present study, the following conclusions were
drawn:

1. The obtained results illustrate that increase in
the E2/E1, decreases SIF and when E2/E1 = 10,
the SIF of the FGM vessel is always lower than
the corresponding homogeneous vessel.
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2. As the relative depth of crack b/t increases, the
decreasing trend of SIF comparative to Paramet-
ric angle (φ) is increases.

3. In FGM vessel, the maximum SIF occurs at cor-
ner points of crack (φ = 0) while for homoge-
neous vessel, the critical point of SIF is often at
the deepest point (φ = 90).

4. The relationship between SIF and internal pres-
sure in functional graded material is linear, so
that increasing internal pressure increases SIF
linearity.

5. Since the crack growth starts from the point
which has maximum SIF, so it can be said that
the corner points in this vessel, are critical points.
Finally, it could be claimed that a good agree-
ment was observed between two methods

6. In accordance with Table 2, the SIF increases
with increasing internal pressure of the vessel at
different φ, except in φ = 10. The obtained re-
sults show that internal pressure of vessel com-
pared to has a notable effect on the SIF.

7. In Fig. 9, when internal pressure increases, with
increasing material gradient, the KI decreased.
Also, the relation between KI and internal pres-
sure for different material gradient is linear.

8. For study of effect crack geometry, in Fig. 8,
for b/t = 0.2, 0.4, 0.6 and 0.8 by increasing ma-
terial gradient from 5 to 10, the normalized KI

decreases and b/t = 0.2 is expected as the nor-
malized KI increases.

9. In Fig. 19, the normalized KI in direction of
crack regime, b/t = 0.6, b/a = 1.5, t/Ri = 0.5,
for all of the material gradients by increasing φ
decreases.
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