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Abstract

Recent studies on the mechanics of materials have shown that the ductile
fracture is significantly affected by the stress invariants among progressive
plastic deformation. In this paper the micro-mechanical Gurson-Tvergaard-
Needleman (GTN) model is utilized to investigate the fracture behavior of
high-strength steel AISI 4340 under various stress triaxialities. Experimental
tensile tests were conducted on the smooth and notched round-bar specimens
to evaluate the effect of the stress triaxiality on the fracture initiation.
Subsequently, finite element (FE) simulations were implemented using
Abaqus/Explicit via the user subroutine VUMAT. The comparison between
the simulations and experimental results indicate the best accuracy of the
GTN micromechanical model to appraise the ductile fracture initiation.
Furthermore, the results demonstrate the significant effect of the stress
triaxiality value on the start of the ductile rupture.

Nomenclature

σ Stress tensor s Deviatoric stress tensor
σm Mean stress σeq Von-Mises equivalent stress
σY Flow stress σ0 Initial yield stress of the matrix material
f∗ Effective void volume fraction f0 Initial void volume fraction
f Void volume fraction fc Critical void volume fraction
ff Failure void volume fraction at the onset of

fracture
εN Mean value of the plastic strain for void nu-

cleation
FN Volume fraction of void nucleating particles εm Effective matrix plastic strain
SN Standard deviation ε Total strain tensor
εel Elastic strain tensor εpl Plastic strain tensor
C Fourth order isotropic elasticity tensor I Identity tensor
ϕ Yield function qi Tvergaard parameters
R Residual function E Elasticity modulus
Qi Voce hardening parameters v Poisson’s ratio
: Double dot product

1. Introduction

The fracture phenomenon in materials has attracted a
large amount of attention during the last decades. The

significance of predicting fracture in engineering mate-
rials, especially metallic alloys, has increased with fur-
ther industrial development. Therefore an enormous
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number of studies have been conducted to estimate
the fracture behavior of materials in macro and micro
scales. In micro-scale, the ductile fracture can be ex-
plained by three separate phases, including nucleation
of micro-voids, growth of existing voids and finally, co-
alescence of them. Studies on the nucleation, growth,
and coalescence of voids were initially conducted by
McClintock in 1968 [1] and Rice and Tracey in 1969 [2].
They proposed relations for the growth of the voids by
considering the growth of a cylindrical or spherical void
in an infinite rigid perfect plastic matrix subjected to
remote stress fields. The sensitivity of the void growth
to the stress triaxiality was detected in both models.
Stress triaxiality is defined as the ratio of the hydro-
static stress to the von Mises equivalent stress. The
deficiency of the mentioned models was the incapabil-
ity of them to take into account the void interaction
and also void growth effects on the material behavior.
These problems were considered in 1977 by Gurson [3].
He studied the plastic flow in a finite sphere, including
a spherical void and proposed a yield function for a
porous-like material, including both of the void inter-
action and growth effects. In order to better reflect the
effect of the void interaction, Tvergaard [4] improved
the Gursons model by incorporating extra parameters.
The Gurson’s model and its modification proposed by
Tvergaard were not able to explain the rapid loss of
strength at the onset of the fracture. Therefore, Tver-
gaard and Needleman [5] enhanced the former model
by including void coalescence effects. This model is
well-known as Gurson-Tvergaard-Needleman (GTN).
The GTN model only contains the first and second
stress invariants. The lack of the third stress invari-
ant is a weakness for this model especially when the
stress triaxiality is low and shear becomes the domi-
nant mechanism in the failure. Consequently, Xue [6]
and Nashon and Hutchinson [7] proposed modifications
to the GTN model by adding the third stress invariant
effects on the fracture behavior of the material. Con-
currently, various studies were conducted to investigate
the effects of the second and third stress invariants by
experiments and numerical simulations [8-17]. Bao and
Wierzbicki [8] performed some experimental tests on
aluminum alloys in a wide range of stress triaxialities
to estimate their effects on the fracture strain. Bonora
et al. [9] and Mirone [10] carried out some experimen-
tal tests on the smooth and notched specimens and
demonstrated that ductile failure is remarkably influ-
enced by different stress triaxiality regimes. Barsoum
and Faleskog [11,12] and Brunig et al. [13] studied
the ductile failure dependence on the stress triaxiality
as well as the Lode angle parameter and showed that
the Lode angle has a significant effect on the ductile
fracture initiation. Bai and Wierzbicki [14] proposed a
new metal plasticity model incorporating all stress in-
variants. This model that predicts the material behav-
ior up to fracture initiation is established based on the

stress triaxiality and Lode angle parameters. Driemeier
et al. [15] designed modified Arcan specimens to exam-
ine the effect of rapid changes in stress states and defor-
mation modes on the behavior of a kind of aluminum
alloy. Khan and Liu [16] conducted experimental tests
in a wide range of stress triaxialities to establish an
empirical ductile fracture criterion for engineering ap-
plications. Malcher et al. [17] considered three con-
stitutive models, including Xue [6], Lemaitre [18] and
Bai and Wierzbicki [14] models to compare their appli-
cability and prediction reliability under a wide range
of stress triaxialities. More recently, the effect of the
stress triaxility and the Lode angel parameter were re-
ported by many researchers [19-22]. In this study ex-
perimental tensile tests were carried out on the smooth
and notched round-bar samples of high strength AISI
4340 steel. Notched round-bar specimens with differ-
ent notch radii were utilized to capture the material
behavior under increasing stress triaxialities. Numer-
ical simulations were implemented based on the GTN
model, and the simulation results were compared with
the experimental ones. Results show the accuracy of
the GTN model to predict the ductile fracture under
various stress triaxialities.

2. Governing Equations

As mentioned in the introduction section, one of the
most widely used micro-mechanical models which de-
scribes the ductile fracture behavior of materials is the
GTN model. The GTN model takes into account the
void nucleation, growth and coalescence stages. The
yield function ϕ, based on the GTN model is repre-
sented as [5]:

ϕ =
σ2
eq

σ2
Y

+ 2q1f
∗ cosh

(
3q2σm

2σY

)
− [1 + q3f

∗2] = 0

(1)

In the equation above, σeq =

√
3

2
s : s is the equivalent

von Mises stress where s denotes the devatoric part of
stress tensor. The symbol (:) shows double dot product

between two tensors and σ −m =
1

3
σ : I is the hydro-

static part of the stress tensor where I denotes second
order identity tensor. σY is the flow stress of the ma-
trix material which follows a von Mises yield criterion.
q1, q2, and q3 are Tvergaard parameters [4]. f∗ is the
effective void volume fraction proposed by Tvergaard
and Needleman [5] to incorporate the coalescence effect
of voids and is defined as:

f∗(f) = f f < fc

f∗(f) = fc +

1

q1
− fc

ff − fc
(f − fc) fc ≤ f ≤ ff

(2)
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where fc and ff are critical and failure void volume
fractions, respectively. Voids start to show coalescence
in the material when the void volume fraction reaches
fc and the material fails when it becomes equal to ff .
Note that if f = 0, Eq. 1 decreases to von Mises
yield function. The GTN model assumes that the void
growth rate is a result of the nucleation of secondary
voids and growth of existing voids [5].

ḟ = ḟnucleation + ḟgrowth (3)

The nucleation term is assumed to be plastic strain
controlled and was proposed by Chu and Needleman
[23] as:

ḟnucleation = AN ε̇M (4)

AN =
FN

SN

√
2π

exp

[
−1

2

(
εM − εN

SN

)2
]

(5)

where FN , εN , and SN are the volume fraction of void
nucleating particles, mean value of plastic strain for
void nucleation and standard deviation, respectively.
εM is the effective matrix plastic strain and its growth
rate is given as:

ε̇M =

√
2

3
ε̇pl : ε̇pl (6)

where ε̇pl denotes the plastic strain tensor. The rate
of the effective matrix plastic strain can be written ac-
cording to the equivalency of the overall rate of macro-
scopic and microscopic plastic work as [5]:

ε̇M =
σ : ε̇pl

(1− f)σY
(7)

Also the growth rate of voids is defined as:

ḟgrowth = (1− f)tr(ε̇pl) (8)

where tr(ε̇pl) is the trace of the plastic strain rate ten-
sor.

3. Numerical Implementation

To implement the GTN model, a numerical procedure
based on the return mapping algorithm was proposed.
The algorithm was implemented in Abaqus/Explicit
via the user subroutine VUMAT. According to this
method, all variables were discretized based on the
backward Euler method. All variables were assumed to
be given at the start of an increment, which is shown
by subscript n, then by using return mapping algo-
rithm, the variables were evaluated at the end of the
increment, which is shown by subscript n+1. Consid-
ering the interval from the state n to n+ 1, the back-
ward Euler method allows to discretize the constitutive
equations as:

ϵn+1 = ϵeln+1 + ϵpln+1 (9)

ϵn+1 = ϵn +∆ϵ (10)

σn+1 = σn + C : (∆ϵ−∆ϵp) (11)

where C is the fourth-order isotropic elasticity; ϵ and
ϵel denote the total strain and elastic strain tensors,
respectively. By supposing that the strain increment
given in end of the increment is completely elastic, the
stress tensor, which is known as the trial stress tensor,
can be calculated as:

σtrial = σ − n+ C : ∆ϵ (12)

Consequently, the corresponding yield function
ϕ(σtrial

m ·σtrial
eq ·Hin) can be obtained, whereHi (i = 1, 2)

represents scalar state variables f and respectively. If
ϕ ≤ 0 yielding does not occur in this increment and
current state is elastic. This means that the response is
elastic and the trial stress and other constitutive vari-
ables come to be the final stress and the constitutive
variables at this increment, thus:

σn+1 = σtrial (13)

Otherwise, if ϕ > 0 the current state is plastic and Eq.
13 is no longer valid. Therefore, the plastic correction
should be determined using Newton-Raphson iterative
method. The incremental form of the plastic strain
tensor can be written in the form of its spherical and
deviatoric parts as:

∆ϵp =
1

3
∆emI+∆ϵqnn+1 (14)

where

nn+1 =
3

2

Sn+1

σeq
(15)

∆ϵm = ∆λ

(
∂ϕ

∂σ

)
(16)

∆ϵq = ∆λ

(
∂ϕ

∂σeq

)
(17)

Eliminating ∆λ from equations (16) and (17) gives a
residual function as:

R = ∆ϵm

(
∂ϕ

∂σeq

)
−∆ϵq

(
∂ϕ

∂σm

)
= 0 (18)

Newton-Raphson iterative method should be utilized
to solve the non-linear Eq. 18 and ϕ(σm · σeq · Hi).
This iterative method continues until the values of ∆ϵq
and ∆ϵm and consequently Newton-Raphson method
converge. The convergence criteria were selected such
that the value of R and ϕ became almost zero. In this
work, the tolerance value was assumed 10−6. There-
fore by using the converged values of ∆ϵq and ∆ϵm the
stress tensor and state variables can be updated at the
end of the increment. The stress integration flow chart
is represented in Fig. 1.
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Fig. 1. VUMAT subroutine flow chart for GTN model.

4. Experimental Procedure

To evaluate the GTN model, a series of experimental
tests were carried out on the three types of test spec-
imens. These test specimens were the smooth round-
bars and the notched round-bars with medium and
sharp notch radiuses which were designed and prepared
based on the Bao and Wierzbicki work [24]. All sam-
ples were made of AISI 4340 high strength steel with a
total length of 120mm. Geometry of each specimen
is illustrated in Fig. 2. Three specimens were im-
plemented for each type of the experimental test and
the average of the results was represented as an ex-
perimental curve. Fig. 3 represents the experimental
force-displacement curves of the smooth samples. Ex-
tension of the specimens were measured using an exten-
someter with a gauge length of 12.5mm for the smooth
and sharp notched bars and with a gauge length of
25mm for the medium notched bars. All tests were
conducted at room temperature and in a strain rate of
0.5mm/min. Fig. 4 shows the specimens which were
firmly clamped by the grippers of a 30-ton capacity
Instron servo-hydraulic machine. The SEM images of
the fracture surface of the specimens are shown in Figs.
5-7. The cup and cone type of fracture surface as well
as the micro-dimple patterns can be observed. Near
outer surface, the dense of the dimples are less than

the center of specimen. This feature shows that the
hydrostatic stress has a significant effect on the nucle-
ation and growth of the micro-voids.

5. FEM Simulations

In this section the numerical simulations of the tested
specimens are presented. The matrix material was as-
sumed to obey a two-term Voce hardening relation as
represented in the following equation:

σY = σ0 +Q1(1− exp(−b1εM )) +Q2(1− exp(−b2εM ))
(19)

whereQi and bi are the hardening parameters and were
calibrated by the numerical simulation of the experi-
mental tests. The calibrated parameters of AISI 4340
high-strength steel are presented in Table 1. The ma-
terial parameters and also GTN dimensionless param-
eters used in this study were calculated based on the
smooth sample and are represented in Table 2. The ini-
tial void volume fraction f0 was assumed to be 0.0001
and the set of parameters {q1 · q2 · q3 · fn · Sn} were
chosen from the work of Narasimhan et al. [25] and
{fc · εN · ff} were calculated by numerical simulation
fitting to experimental results by the trial and error
method.
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Fig. 2. Dimensions of tested specimens. (a) Smooth bar, (b) Large radius notched bar, (c) Small radius
notched bar.

Fig. 3. Experimental force-displacement curves of the
three smooth specimens.

Table 1
Hardening parameters.

Q1 b1 Q2 b1
85MPa 600 100MPa 25

5.1. Smooth Round Bar

Only a quarter of the smooth round bar was simulated
using 2400 four-node axisymmetric elements with re-
duced integration (CAX4R in Abaqus element library),
due to axis-symmetry condition as shown in Fig. 8.
The boundary conditions of the FE models were de-
fined based on the displacement condition on the spec-
ified nodes. All the nodes on the top edge were dis-
placed in the vertical direction while the nodes on the
bottom edge were constrained in that direction.

The comparison of the force-displacement curves
from simulation and experiment is given in Fig. 9a.
It can be seen that the numerical simulation result is
in good agreement with the experiment, and the maxi-
mum value of error between simulation and experiment
does not exceed 5% for the smooth specimen. Fig. 9b
compares the stress-plastic strain curves between the
fitted Voce hardening model and the experimental re-
sult of the smooth round bar. It shows that the two-
term Voce hardening can accurately predict the plastic
behavior. In this figure, the coefficient of determina-
tion, which denoted , is about 99%. Fig. 10a-d shows
the contour plots of the effective matrix plastic strain
at different displacements until the onset of the frac-
ture.

As it can be seen, the distribution of the effective
matrix plastic strain is uniform in Fig. 10a but it tends
to concentrate in the center of specimen with increas-
ing displacement in Fig. 10d, where the necking effect
can be observed as well. The GTN model also predicts
that the concentration of the effective matrix plastic
strain is at the center of the smooth specimen at the
onset of the fracture as shown in Fig. 10e.

Table 2
GTN parameters.

E 203GPa q1 1.5
σ0 1100MPa q2 1
v 0.33 q3 2.25
f0 0.0001 εN 0.3
fc 0.0025 FN 0.0008
ff 0.05 SN 0.1
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Fig. 4. Tested specimens. (a) Smooth bar, (b) Medium radius notched bar, (c) Sharp radius notched bar.

Fig. 5. SEM images of the fracture surface of the smooth specimen at (a) 70× magnification, (b) 1000×
magnification and (c) 5000× magnification of region A respectively.

Fig. 6. SEM images of the fracture surface of the medium radius notched bar specimen at (a) 70×magnification,
(b) 1000× magnification and (c) 5000× magnification of region A respectively.

Fig. 7. SEM images of the fracture surface of the sharp radius notched bar specimen at (a) 70× magnification,
(b) 1000× magnification and (c) 5000× magnification of region A respectively.
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Fig. 8. Meshed model used in the finite element sim-
ulation.

Fig. 11a-d shows the contour plots of void volume
fraction until the fracture initiation moment. Similar
to the effective matrix plastic strain, a same tendency
for increasing the displacement can be observed in the
behavior of void volume fraction on the fracture sur-
face. The GTN model predicts that the void volume
fraction reaches its maximum value at the center of the
fracture surface for the smooth specimen as illustrated
in Fig. 11e.

It should be mentioned that both of the effective
matrix plastic strain and void volume fraction curves
at the onset of fracture throughout the fracture surface
are in agreement with the experimental results which
indicate that the fracture initiation occurs at the center
of specimen.

Fig. 12a-d shows the stress triaxiality contour plots
at different displacements and its concentration with
increasing displacement. Fig. 12e shows the triaxiality
through the fracture surface at the onset of the frac-
ture.

5.2. Notched Round Bars

Similar to the smooth bar, a quarter of the notched
round bars were modeled using four-node axisymmetric

elements with reduced integration (CAX4R in Abaqus
explicit) as shown in Fig. 13. The number of ele-
ments used for the large and small radius notched bars
were 13160 and 12530 respectively. The material and
GTN parameters of the smooth bar were used here for
the notched samples too. The comparison of force -
displacement curves from the simulations and experi-
ments are given in Fig. 14. The error between the sim-
ulation and experiment does not exceed 4% for medium
radius notched bar and 6% for sharp radius notched
bar. As it can be seen, the ductility of the material
decreases with decreasing notch radius. It can be con-
cluded that the simulations can predict the overall be-
havior of force displacement curves with good agree-
ment but it overestimates the fracture displacement in
the notched bars. It is worth noting that similar to the
smooth sample, the fracture initiates at the center of
the specimen for the notched round-bars according to
the experimental and numerical results.

The effective matrix plastic strain over the fracture
surface at the onset of the fracture for the notched
round-bars is shown in Fig. 15. Similar to the smooth
specimen, the GTN model predicts the concentration
of the effective matrix plastic strain at the center of
the fracture surface for the medium radius notched
bar. For the sharp radius notched bar, the simula-
tions cannot predict the concentration of the effective
matrix plastic strain at the center of the fracture sur-
face. It can be seen from Fig. 16 that the void vol-
ume fraction growth tends to be in the center of the
notched bars with increasing displacement similar to
the smooth bar, and consequently, the critical value of
void volume fraction occurs at the center of the fracture
surface. The void volume fraction for notched round
specimens increases rapidly from 0.0025 up to fracture.
Consequently, the value of 0.0025 was selected as a frac-
ture initiation void volume fraction. As a result, the
location of the fracture initiation can be predicted for
the smooth and medium radius notched bars using the
GTN model. But unlike the smooth and medium

Fig. 9. a) Force displacement curves of the smooth specimen and b) Stress plastic strain curves of the smooth
round bar.
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Fig. 10. a-d) Effective matrix plastic strain contours at different displacements and e) Effective matrix plastic
strain over the fracture surface at the onset of fracture.

radius notched bars, the simulation cannot accurately
predict the fracture onset location in the sharp ra-
dius notched bar. Similar results of the overestima-
tion of fracture displacement and disagreement of the
concentration of the effective matrix plastic strain in
the notched tensile bars are also observed in the work
of Malcher et al. [17] and interpreted as a result of
the differences in the stress triaxialities between the
notched specimen and the specimen used to calibrate
the model parameters. The distribution of stress triax-
iality over the fracture surface at the onset of fracture
is represented in Fig. 17.

The effective matrix plastic strain over the fracture
surface at the onset of the fracture for the notched
round-bars is shown in Fig. 15. Similar to the smooth
specimen, the GTN model predicts the concentration
of the effective matrix plastic strain at the center of
the fracture surface for the medium radius notched
bar. For the sharp radius notched bar, the simula-
tions cannot predict the concentration of the effective
matrix plastic strain at the center of the fracture sur-

face. It can be seen from Fig. 16 that the void vol-
ume fraction growth tends to be in the center of the
notched bars with increasing displacement similar to
the smooth bar, and consequently, the critical value of
void volume fraction occurs at the center of the frac-
ture surface. The void volume fraction for notched
round specimens increases rapidly from 0.0025 up to
fracture. Consequently, the value of 0.0025 was se-
lected as a fracture initiation void volume fraction. As
a result, the location of the fracture initiation can be
predicted for the smooth and medium radius notched
bars using the GTN model. But unlike the smooth and
medium radius notched bars, the simulation cannot ac-
curately predict the fracture onset location in the sharp
radius notched bar. Similar results of the overestima-
tion of fracture displacement and disagreement of the
concentration of the effective matrix plastic strain in
the notched tensile bars are also observed in the work
of Malcher et al. [17] and interpreted as a result of
the differences in the stress triaxialities between the
notched specimen and the specimen used to calibrate

Ductile Fracture Analysis of High-strength Steel Bars Using Micromechanical GTN Model: 31–42 38



the model parameters. The distribution of stress triax-
iality over the fracture surface at the onset of fracture
is represented in Fig. 17.

6. Conclusions

In this study uniaxial tensile tests were carried out on
the smooth and notched round-bar specimens made of
AISI 4340 steel with various notch radii. Numerical
simulations of the tested specimens were conducted us-
ing the GTN model. Good accuracy in predicting the
force displacement curve of the smooth specimen was
observed. For the notched specimens, the GTN model
was capable of predicting the overall behavior of force -
displacement curves with a good accuracy; however, it

overestimates the fracture displacements. The results
of the simulations show a reasonable evaluation of the
effective matrix plastic strain for the smooth and large
radius notched-bars. For the small radius notched bar,
the effective matrix plastic strain was in disagreement
with the experiments. Furthermore, the GTN model
predicts that the concentration of void volume fraction
rate and consequently its maximum value were at the
center of specimen, which coincided with the experi-
mental results of the smooth and also notched round
bars. Therefore, it can be concluded that the GTN
model can predict the fracture initiation point in the
smooth and medium notched bars but for the sharp
radius notched bar, this model cannot predict the frac-
ture initiation point accurately.

Fig. 11. a-d) Void volume fraction contours at different displacements and e) Void volume fraction over the
fracture surface at the onset of fracture.
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Fig. 12. a-d) Stress triaxiality contours at different displacements and, e) Stress triaxiality over the fracture
surface at the onset of fracture.

Fig. 13. Meshed models of notched round bars used in the Finite element simulation.
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Fig. 14. Force-displacement curves of a) Large notched round bar and b) Small notched round bar.

Fig. 15. Effective matrix plastic strain over the frac-
ture surface at the onset of fracture.

Fig. 16. Void volume fraction over the fracture sur-
face.

Fig. 17. Triaxiality over the fracture surface at the
onset of fracture.
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