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Abstract

Under cyclic loading, the plastic zone becomes complicated during unloading.
The energy-absorbing cyclic plastic zone is a stimulant for crack growth and
can be a criterion for determining the damage around the fatigue crack tip.
Presenting analytical models for determining the shape and size of the plastic
zone often makes restrictive assumptions such as elastic-perfectly plastic
response. In this research, the effects of non-linear kinematic hardening
behavior of pure copper on the cyclic plastic reaction of the crack tip in
different conditions were investigated. Chaboche nonlinear material model
was used to determine the hardening parameters. According to the numerical
results, the cyclic plastic zone around the crack tip was constant in the same
load range but load ratio had a slight effect on this zone. Moreover, presence
of the kinematic hardening in the cyclic loading caused reverse plastic zone
to be predicted smaller than analytical model. According to the results, for
materials such as pure copper with kinematic hardening behavior, the cyclic
plastic zone increases with increase in the crack length. Therefore, the cyclic
plastic zone, as well as other parameters in the fracture mechanics can be a
proper criterion for fatigue crack growth studies.

Nomenclature

X Total back stress v Poisson’s ratio
Xi Decomposed back stress CT Compact tension
C Kinematic hardening coefficient B Thickness
γ Kinematic hardening exponent W Width
dP Equivalent plastic strain increment Kmax Maximum stress intensity factor
dεp Plastic strain increment Kmin Minimum stress intensity factor
εpx Plastic strain ∆K Stress intensity factor range
σx Stress in cyclic stress-strain diagram cpc Cyclic plastic zone size
σ0 Cyclic yield stress a Crack length
εpL Plastic strain limit ∆P Load range
rp(θ) Plastic zone size in θ direction R ratio Ratio of minimum and maximum load
sY Yield stress
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1. Introduction

In fracture mechanics, most of the studies are based
on the description of growth of the cracks. In ma-
terials which the plastic zone is small in comparison
with specimen dimensions, the assumption of linear
elastic fracture mechanics, known as LEFM, is valid.
In such cases, the concept of the elastic stress inten-
sity factor range ∆K, which is fatigue crack growth
driving, is used [1]. In many loading conditions, linear
fracture mechanics is incapable of describing the stress
fields of the crack tip. In these cases, there are limited
elastic-plastic analyses that evaluate large-scale yield-
ing around the crack tip. Understanding the plastic
zone around the crack tip is of great importance in
the fatigue loading. The large plastic zone absorbs a
large amount of energy during crack propagation and
its small size means that the crack propagation requires
less energy. The plastic zone plays an important role in
the material damage. The studies which investigate the
rate of the fatigue cracks are generally based on the me-
chanical parameters such as ∆K or displacement at the
crack tip, CTOD. During fatigue cracking, two plastic
zones around the crack tip are created. One is a mono-
tonic plastic zone during loading and the other is the
cyclic plastic zone (CPZ) during unloading-reloading
stages. The size and shape of the plastic zone produce
effect on the behavior of the crack growth.

Under cyclic loadings, there are three different
zones around the crack tip as depicted schematically
in Fig. 1. In first region, hysteresis loop is complete
and shape of the loop depends upon R-ratio (here, the
ratio of minimum to maximum stress intensity factors)
and ∆K. Second region located exactly after this CPZ,
which is known as monotonic plastic region. In this
part, the plastic deformation and unloading occur dur-
ing initial monotonic loading and thereafter the elastic
loading. The third zone is positioned far ahead of the
crack-tip and material has elastic behavior [2].

Mishra and Parida [3] used elastic-plastic finite el-
ement analysis on a thin center cracked plate for de-
termining the plastic zones near the crack tip. The
shape and size of the plastic zones at the crack tip for
four stress levels were obtained. It was observed that
plastic zone sizes based on Tresca yield criterion is rel-
atively bigger in comparison with Von-Mises criterion.
The results showed that the tilt angle of the largest
plastic-zone radius with respect to the crack axis de-
creases slightly with increasing the applied stress level.
Lino [4] showed that in steels, there is a relationship
between the fatigue crack growth rate and plastic zone.
In this model of the crack growth, the effect of the plas-
tic zone, which residual stresses affected on it, was in-
vestigated. It was shown that with propagation of the
crack, the plastic zone is enlarged. McClung [5] with
elastic-plastic finite element simulation studied the size
of the monotonic and reversed plastic zones at the crack

tip. He showed that the width of the monotonic plas-
tic zone at the fatigue crack tip is not influenced by
closure. But the width of the reversed plastic zone
in the plane stress condition, due to the fatigue crack
closure, is less than one-fourth of the size of the mono-
tonic plastic zone. Linear hardening behavior was also
considered based on the monotonic results of tensile
test.

Irwin [6] and Dugdale [7] provided analytical mod-
els for estimating the crack tip plastic zone size in an in-
finite plate with central crack. In the presented models,
the material behavior was assumed as elastic-perfectly
plastic. Jingjie et al. [8] estimated cyclic plastic zone
size by maximum crack opening displacement, MCOD
and its variable value, VMCOD. They used 2D elas-
ticplastic finite element analysis to quantify the cyclic
plastic zone size for a center-cracked plate subjected to
cyclic tensile loads. A simple function relationship of
the cyclic plastic zone size was utilized versus MCOD
for elastic-perfectly plastic materials, which were inde-
pendent of the plate width, crack length, elastic mod-
ulus, yield stress, and stress ratio under constant am-
plitude loads.

Fig. 1. Induced zones and their responses around the
fatigue crack-tip [2].

Chikh et al. [9] studied the CPZ size and fatigue
crack growth rate, FCGR on 12NC6 steel. The results
of their research showed that, generally, with crack
growth, the plastic zone size increased and FCGR was
correlated with the energy absorbed in these plastic
zones.

Kwun and Fine [10] used the strain-gauge method
to measure the plastic zone size of powder metallurgy
aluminum alloy MA87 under cyclic loading at various.
In the foil strain-gauge technique, a tiny strain-gauge
is situated on the specimen so that it is parallel to
the loading direction ahead of the crack-tip. During
loading, the output of the strain-gauge is recorded as a
stress-strain diagram. When strain becomes nonlinear,
the distance from the crack-tip until the strain-gauge
center is determined as the plastic zone size. In ex-
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perimental techniques for determining plastic zones, it
is very difficult to separate the CPZ from the mono-
tonic. Moreover, many of the numerical models, which
are used to determine the cyclic plastic behavior of
materials, use isotropic hardening rule as the mate-
rial elastic-plastic response [3,11-13]. Isotropic harden-
ing rule cannot predict some of the cyclic behavior of
the materials, such as the effects of Bauschinger effect,
ratcheting and release of mean stress, which occur in
real materials [14-16]. Therefore, for accurate determi-
nation of the cyclic and monotonic plastic zones, usage
of the finite element methods is very beneficial.

In many analytical and numerical models, mate-
rial behavior is considered elastic-perfectly plastic. In
some numerical models which consider elastic-plastic
behavior, the hardening behavior is calculated based
to the monotonic stress-strain curve. But in this re-
search, the hardening behavior of the material based
on the cyclic stress-strain curve was determined ac-
cording to the Chaboche model [17]. Furthermore in
this research, cyclic plastic zone was determined based
on the back stresses variations in the cyclic loadings.
To evaluate the advantages of this method, the cyclic
plastic zone obtained from finite element analysis was
compared with the predicted values by Irwin analytical
model.

2. Nonlinear Kinematic Hardening
Model

If the stress exceeds the elastic limit and the loading
continues, the hardening of the material may occur in
two forms: the kinematic hardening, which the yielding
surface is transferred in the deviation stress space and
the isotropic hardening at which the yielding surface
is expanded. In fact, a complete plastic model con-
sists of the following three main parts: 1. The yield
function, which is a mathematical relation, based on
the stress components that lead to the formation of the
plastic flow in the material. 2. The flow rule, which ex-
presses the relationship between the stresses and plas-
tic strains. 3. Hardening rule that expresses how to
change the yield function with the plastic strains and
its amount.

Hitherto, numerous numerical models have been
proposed to predict the plastic behavior of the ma-
terials [17-21]. The Chaboche nonlinear kinematic
hardening model, which is used to examine the cyclic
plastic behavior of the materials, can predict cyclic
properties such as Bauschinger effect, cyclic harden-
ing or softening, ratcheting, and releasing of mean
stress. The Chaboche kinematic hardening model is
superposition of several back stress terms in the form
of the Armstrong-Frederick relationship [18], which
each expression simulates one part of a cyclic stress-
strain curve. The Armstrong-Frederick model and the

Chaboche plastic pattern are written in the form of the
equations 3 and 4, respectively.

dX = (2/3)CdεP − ΓXdP (1)

dX =

m∑
i=1

dXi, dXi =
2

3
Cidε

P − γiXidP (2)

where X is back stress, Ci and γi are the material pa-
rameters that are obtained from the experiment. The
equivalent plastic strain increment, dP , is obtained
from equation 3.

dP =

(
2

3
dεP : dεP

)1/2

(3)

Bari and Hassan [21] used hysteresis loop of the cyclic
loading to identify the parameters of Chaboche model.
The equations for determining the stress at each point
are presented in equations 4 and 5.

σx = σ0 +
3∑

i=1

Xi (4)

X3 = C3ε
P
x , (5)

Xi = (Ci/γi)
[
1− 2 exp

{
− γi

(
εPx − (−εPL )

)}]
i = 1, 2

By summing of the three rules in equation 4 and 5, the
stress is determined according to equation 6.

σx = σ0 +

(
C1

γ1

)[
1− 2 exp

{
− γi

(
εPx − (−εPL )

)}]
(6)

+

(
C2

γ2

)[
1− 2 exp

{
− γi

(
εPx − (−εPL )

)}]
+ C3(ε

P
x )

where εPL is the plastic strain limit of the stable hys-
teresis loop, σ0 is the cyclic yield stress and εPx is the
plastic strain at each point of the cyclic stress-strain
diagram.

3. Experiments

In this paper, cyclic and tensile test specimens were
prepared from copper sheet with 5mm thickness. Mea-
sured ingredients of this material are presented in Ta-
ble 1. The reason for choosing copper is its application
in industry, high ductility, and its hardening behav-
ior. This metal is the base element of many alloys and
studying its responses under cyclic loadings is impor-
tant.

Table 1
Yield stress, ultimate stress, and elongation for overlapping FSP
samples.

Zn Pb P Mn Fe Ni Si
< 0.01 < 0.01 < 0.003 0.01 0.01 0.01 0.01

Cr Al S Co Cu
Trace 0.002 None 0.02 > 99.9
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Cyclic test specimens were prepared according to
the standards ASTM E606 [22] and Wire cut process
was used in making specimens. In this method, due to
electrical current in the wire of titanium with 0.1mm
diameter, not any contact is established between cut-
ter and specimen. As a result, no significant residual
stress will be created due to machining. After machin-
ing operation, all of specimens were polished by water
proof polishers with different roughness degrees.

For studying the cyclic plastic behavior, standard
dumbbell-shaped specimens were subjected to cyclic
loading as depicted in Fig. 2. Experiments were
performed using Zwick/Roell servo-hydraulic test ma-
chine. The specimens were carefully tightened to ma-
chines fixtures and adjusted. Tests were done under
0.005Hz frequency. The reason to choose low fre-
quency is providing more data for analysis (200 sec-
onds for each cycle). First, according to specimen di-
mensions and mechanical properties, several specimens
were subjected to loading with various amplitudes to
adjust the machine. Finally, according to initial tests,
strain range of 1.1% was selected for symmetric strain-
controlled cyclic tests. According to the settings, at
least 400 points per cycle were obtained for analysis.

Fig. 2. A cyclic test specimen and its geometry (di-
mensions are in mm).

Based on the experiments, hysteresis loops in sym-
metric strain-controlled loading were found for spec-
imens. Experiments were continued until stabiliza-
tion of hysteresis loops. Obtained hysteresis loops are
shown in Fig. 3.

For using the relations (4-6), the stable hysteresis
loop is used for determining the parameters of the non-
linear kinematic hardening model. The stable hystere-
sis loop is separated, and the analysis is performed on
the loading branch of this loop. From the starting point
of loading, a parallel line with the linear part of the di-
agram is drawn; the first point on the curve that is
deviated from the line is considered as the yield stress.
The plastic part of the loop begins from this point and
continues to the endpoint of the loading branch. The
three hardening rules are applied to the plastic range.
C1 is large enough to model a large slope at the begin-
ning of the yield region, and γ1 is also sufficiently large

to stabilize the first rule and can simulate the knee part
of the loop. The third rule is linear and with assump-
tion of γ3 = 0 passes from the origin, thus its slope
C3 is equal to the slope of linear end part of loading
branch. C2 and γ2 must be in such a way as to satisfy
the model parameters of equation 7.

Fig. 3. Hysteresis loops (engineering stress-strain) in
condition of symmetric strain controlled test for pure
copper material.

C1

γ1
+

C2

γ2
+ σ0 = σx − (C3/2){εpx − (−εPL )} (7)

In equation (7), εpx is the plastic strain at the points
around the end of the plastic zone. The sum of these
rules (total back stresses) with initial yield stress (the
beginning of the plastic region) simulates the overall
stress of the hysteresis loop. After calculating param-
eters of these three rules, the relationship between the
stress σx and the plastic strain εpx in the hysteresis loop
is determined according to the equation (6). In Figure
4, experimental and simulated stable hysteresis loops
based on a nonlinear kinematic hardening model are
presented. The comparison of results shows that the
simulated model has sufficient accuracy.

Fig. 4. Experimental and simulated stable hysteresis
loop of pure copper.

In this study, the kinematic hardening behavior of
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the material for the stabilized hysteresis loop (as de-
picted in Fig. 4) is determined. The calculations are
based on the relationships in section 2 and the method
that presented in section 3. The calculated parame-
ters based on Chaboche nonlinear kinematic hardening
model are presented in Table 2.

Table 2
Parameters of Chaboche nonlinear kinematic hardening model.

Cosntant Value
σ0(MPa) 91
C1(MPa) 71470
C2(MPa) 59653
C3(MPa) 3150
γ1 8920
γ2 667
γ3 0

4. Analytical Models for the Plastic
Zones Around the Crack Tip

The shape of the plastic zone is obtained by calculating
the radius of plastic area with considering the proper
yield criterion versus different value of position angles,
θ. In this method, the approximate shape of the plastic
zone is estimated by finding the locus of the points for
which the elastic stresses fields satisfy the yield crite-
rion. By using the singular stress field (which is based
on the stress intensity factor and distance from the
crack tip) and Von-Mises yield criterion, the expansion
of the plastic zone as a function of θ is obtained by
using the equations 8 and 9, for the plane strain and
plane stress conditions, respectively [23].

rp(θ) =
K2

I

4πS2
Y

[
3

2
sin2 θ + (1− 2v)2(1 + cos θ)

]
(8)

rp(θ) =
K2

I

4πS2
Y

[
1 +

3

2
sin2 θ + cos θ

]
(9)

This method is based on a simple yield criterion and
does not consider any stress redistribution due to the
plastic deformations. Therefore, it is an approximate
method. Irwin model is a correction method for the
size of the plastic zone and estimates the plastic zone
ahead of the crack tip for the cases of plane stress and
plane strain under small-scale yielding. According to
Irwin’s theory [6], corrected length of the plastic zone
in front of the crack tip for the plane stress and plane
strain conditions are presented in equations 10 and 11,
respectively.

c =
1

π

(
KI

SY

)2

(10)

c =
1

3π

(
KI

SY

)2

(11)

In these equations, c is the size of the plastic zone and
KI is the mode I stress intensity factor, which is de-
fined in equation 12 for the CT specimen [24].

KI =
P

B
√
W

(2 + α)

(1− α)3/2
(0.886 + 4.64α

− 13.32α2 + 14.72α3 − 5.6α4)

(12)

where P is the applied load, B is the thickness, W is
the CT specimen width, α = a/W and a is the crack
length.

In the model presented by Dugdale, the plastic zone
is corrected for materials with elastic-perfectly plastic
behavior that follows Tresca criterion. The Dugdale
model [7] is based on the strip model offered for very
thin plates (plane stress condition). The length of the
plastic zone is obtained by equation (13).

c =
π

8

(
KI

SY

)2

(13)

In cyclic loading, the stress intensity factor varies from
Kmax during the loading stage to Kmin at the end of
the unloading stage, therefore stress intensity factor
changes according to ∆K = Kmax −Kmin. Consider-
ing elastic-perfectly plastic behavior, the stress range
varies by twice of the monotonic yield stress (range
from +SY to −SY ). For plane strain condition, ac-
cording to the Irwin model, the size of the CPZ is de-
termined by equation 14.

cpc =
1

3π

(
∆K

2SY

)2

(14)

5. Numerical Modeling of the Plastic
Zones

It is quite difficult to experimentally determine the
cyclic plastic zone around the crack tip. Moreover, an-
alytical relations give approximate values only ahead
of the crack tip. In the Irwin and Dugdale models,
the plastic zone in front of the crack tip is measured
along with the crack line and the shape of this zone
assumed circular, regardless of the actual shape of the
zone. In these models, there is no singular stress and
elastic-perfectly plastic behavior is assumed for mate-
rials. The actual size and shape of the plastic zone
that are due to the elastic-plastic behavior in mono-
tonic loading can be achieved through the numerical
solutions.

5.1. Finite Element Model of CT Specimen

Two-dimensional finite element models were con-
structed for simulating of compact tension (CT) spec-
imens (width = 25mm, height = 24mm and thickness
= 5mm) with various crack lengths. Seven models with
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crack lengths of 7, 7.5, 8, 8.5, 9, 9.5, and 10mm were
constructed. These models with various crack lengths
were designed for evaluating of the cyclic plastic zones
which were affected by the crack length. Commercial
finite element package, Abaqus, was used in this study.
The material model parameters described in sections 3
and presented in Table 2 were introduced to the finite
element software. Eight-node nonlinear elements un-
der plane strain condition, CPE8R, with reduced in-
tegral technique were used in meshing of the model.
The elements were quad shape created by the sweep
and free techniques. Fig. 5a shows overall meshing of
the CT specimen. In the near-tip regions, the refined
meshes were used to capture the large strain gradients
due to presence of the crack. The elements sizes in the
zone around the crack tip were sufficiently small and
decreased linearly with the elements approaching the
crack tip, as shown in Fig. 5b. In the present study,
the smallest element size reaches 0.5µm at the crack
tip to achieve the convergence of the solutions. The
model had 7104 elements inside a circle with a radius
of 1 mm in the center of the crack tip. For every model,
the maximum loads were imported in the load module
in the software and then tabular data was imported
for define of the load ratio. In step module, every cy-
cle was specified with 50 evenly spaced time intervals.
The high number of intervals allows analyzing the re-
sults with more detail.

Fig. 5. Finite element model mesh a) CT specimen,
b) Meshes around the crack tip.

5.2. Plastic Zones

In CT specimens with different crack lengths, the plane
strain analysis was performed. In each crack length,
by fixing of the maximum load Pmax and change in
the loading ratio R, the plastic zone was determined.
Furthermore, proper analyses were performed on the
model by fixing the loading range, P, and changing the
load ratio. The region around the crack tip, which is
being plastic in the tensile loading of the first cycle, is
considered as a monotonic plastic zone (MPZ). At the
maximum load, it is assumed that the common bound-
ary between the plastic and elastic zones are created in
the equivalent plastic strain equal to 5 × 10−6. A re-
gion around the crack tip in which the plastic strain is

greater than 5×10−6 is defined as the MPZ. This zone
is also accessible at places around the crack tip, which
have non-zero back stress in the loading direction, a22,
and has the same results as monotonic loading. In
Fig. 6, for example, the MPZ around a crack with
a = 8mm under maximum load, Pmax = 1200N, is de-
picted based on the equivalent plastic strain and back
stress. As can be seen, there is no considerable differ-
ence between the results for the size of the monotonic
plastic zone.

Fig. 6. Monotonic tensile plastic zone at maximum
load, a) With equivalent plastic strain (PEEQ), b)
With back stress on loading direction (a22).

The test material has a kinematic hardening behav-
ior and due to the plastic behavior of the material in
cyclic loading, back stresses are generated around the
crack tip. In cyclic loadings in far regions from cracks,
the behavior of the material is elastic, but when we
approach the crack tip, the behavior of the materials
becomes plastic, and in the region that contains closed
stress-strain loop (hysteresis loop), the CPZ is created.
In fact, in the region where loading leads to hysteresis
loops, the back stresses change over the cycles. There-
fore, the CPZ can be drawn on the basis of a criterion
that back-stress in the loading direction changes be-
tween maximum and minimum peak stresses [16]. In
Fig. 7, the back stress contours are shown for maxi-
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mum and minimum loads on CT specimen with crack
a = 8mm and loading conditions as Pmax = 1200N
and R = 0.1. As can be seen, there are considerable
variations in the stresses near the crack tip due to the
change of the loading from maximum to minimum val-
ues. However, in far regions, back stress distribution
does not show variations. In Fig. 7b, the white border
line shows the shape of the CPZ approximately. Fig.
8 shows the back stress variations due to applying the
minimum and maximum loads versus distances from
crack tip. It can be seen that the curves for maximum
and minimum loads for each condition coincide after
some distances from crack tip, which means after that
the back stresses do not change over the cyclic load-
ing. The distance from the crack tip to this point of
intersection in desired direction is assumed as the CPZ.

Fig. 7. Back stress contours in pure copper CT spec-
imen with a crack, a) At maximum load of Pmax =
1200N, b) At minimum load with load ratio, R = 0.1.

For a more precise study of the shape of the CPZ,
in several directions, back stress variations were inves-
tigated. By specifying the intersection of simulated di-
agrams, the shape of the CPZ is characterized by the

presented method. In Figs. 9-11, the CPZ is presented
in various loading conditions. In fact, the plastic zone
is symmetrical relative to the crack surface, so only the
upper part of the CPZ is shown here. The investiga-
tions were conducted in several crack lengths, but in
Figs. 9-11, the results are shown for four crack lengths.
In Fig. 9, the maximum load is and the load ratio is
0.1 and 0.3 while in Fig. 10 we have Pmax = 1200N. In
Fig. 11, the load range is ∆P = 1200N with the load
ratios as 0.077 and 0.2.

Fig. 8. Variation of back stresses versus distance from
the crack tip at minimum and maximum loads.

To compare the CPZ in different conditions, the
width and height of the CPZs were determined from
obtained contours in Figs. 9-11. These results for
conditions of Pmax = 1.2kN, Pmax = 1.5kN and
∆P = 1.2kN with different load ratios are shown in
Figs. 12a, 12b and 13, respectively.

With respect to Fig. 12, the CPZ size (CPZS) in-
creases by constant maximum load of Pmax and de-
crease in the load ratio. This indicates that the CPZS
is correlated with the load range. In Fig. 13, the
CPZS (width and height) is presented under the same
load condition, ∆P = 1.2kN and different load ra-
tios, R = 0.077 and R = 0.2, are equivalent to the
loading conditions of Fig. 11. According to the re-
sults of the numerical models, in all investigated cases,
CPZS increases when the length of the crack increases.
With respect to Fig. 13, the values of CPZS in each
crack length are approximately equal with the same
load ranges. This is consonant with analytical results.
Based on the Irwin analytical model accordance with
equation 14, CPZS in-plane strain condition is corre-
lated with load range (∆K). In the Irwin analytic rela-
tionship, elastic- perfectly plastic behavior was applied
with von-Mises yield criterion. This material model is
a simplistic assumption that decreases the accuracy of
the prediction of the plastic zone, while the Chaboche
advanced model presents the hardening behavior of the
material in cyclic loading, which is consistent with ex-
perimental results. This model, which has been tested
on the studied material, was implemented in the fi-
nite element software. For comparison, in Fig. 14, the
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stress-strain behavior of the studied material is pre-
sented in elastic-perfectly plastic model and Chaboche
nonlinear kinematic hardening model in the cyclic load-
ing branch (Fig. 4). As shown in Fig. 14, the presence

of kinematic hardening in the stable loop increases the
yield level after the cyclic yield point. Figs. 15a, 15b,
and 15c show the CPZS based on the finite element
model and the analytic model of equation (15).

Fig. 9. Plastic zone versus crack lengths for Pmax = 1200N, a) R = 0.1, b) R = 0.3.

Fig. 10. Cyclic plastic zone versus crack lengths for Pmax = 1200N, a) R = 0.1, b) R = 0.3.

Fig. 11. Cyclic plastic zone versus crack lengths for ∆P = 1200N, a) E = 0.077, b) R = 0.2.
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Fig. 12. Width and height of the CPZs for different crack lengths and R = 0.1, 0.3 a) ∆P = 1.2kN, b)
∆P = 1.5kN.

Fig. 13. Width and height of the CPZs at fixed load
range ∆ = 1.2kN and different load ratios R = 0.077,
R = 0.2 for different crack lengths;

Fig. 14. The loading branches of stress-strain curves
based on the Chaboche nonlinear kinematic hardening
and elastic-perfectly plastic models for pure copper.

Fig. 15. Analytic and finite element models prediction of CPSZ, a) Pmax = 1.2kN, b) Pmax = 1.5kN, c)
∆P = 1.2kN.

Journal of Stress Analysis/ Vol. 2, No. 2/ Autumn − Winter 2017-18 51



As shown in Figs. 15a and 15b, in total loadings,
the CPZS obtained from the analytic model is larger
than that of finite element model. The values of CPZS
in two models have large differences because the ana-
lytic model does not consider the hardening behavior
of the studied material in cyclic loading. This limi-
tation leads to unreliability of the predictions of this
model. Numerical analyses show that increasing the
crack length under the same loading conditions leads
to an increase in the size of the plastic zone around
the crack tip. This is also due to the analytical model
because the increase in the length of the crack leads
to an increase in the range of stress intensity factor
according to Eq. 12 and thus CPZS increases accord-
ing to Eq. 14. In fact, the enlargement of the plastic
zone with crack growth decreases the material strength
against crack growth. In a model with the hardening
behavior compared to an analytical model that consid-
ers material behavior as an elastic-perfectly plastic, the
increase in the yield level of material after the cyclic
yield point (Fig. 14) leads to a decrease in CPZS.

6. Conclusions

In this study, the effects of the nonlinear kinematic
hardening on the shapes and CPZSs were investigated
using finite element simulation. Analytical and nu-
merical solutions based on the monotonic loading be-
havior can lead to a significant error. Moreover an-
alytical models, such as the Irwin and Dugdale mod-
els, consider the material behavior as elastic-perfectly
plastic, whilst many materials such as pure copper,
have elastic-plastic behavior and exhibit high kine-
matic hardening behavior under the cyclic loadings.
The Chaboche model is selected for use in the finite el-
ement analysis, due to its precision in the modeling of
the nonlinear kinematic hardening behavior. The pa-
rameters of the hardening model were extracted from
experimental tests with symmetric strain-controlled
cyclic loading. When the hysteresis loops were formed
in the cyclic loading, the cyclic plastic zone was cre-
ated. Numerical solutions in present study were per-
formed in different crack lengths under different load-
ing conditions. The simulation results showed that the
CPZS, unlike the monotonic plastic zone, does not de-
pend on the maximum load and depends only on the
load range. The results in this study showed that the
CPZS increases by fixing the maximum load, Pmax and
decreasing the load ratio. The results of the Irwin
analytical model were compared with the simulation
results, which uses the Chaboche kinematic harden-
ing model in the finite element analysis. The results
showed that the CPZS in the finite element model was
significantly different from the Irwin model results and
had fewer values. The small size of this plastic zone is
because of its nonlinear kinematic hardening behavior.

According to the results of this study, CPZS increases
with increasing the cracks length. Considering that
increase in the crack length in fatigue loading leads
to increasing the crack growth rate, the cyclic plastic
zone could be an appropriate criterion for fatigue crack
growth analysis. In fact, the cyclic plastic zone is of
great importance, because it absorbs a high percent-
age of energy of the system and can be a significant
parameter in the analysis of the fatigue crack growth,
such as δK, cyclic J-integral, and crack tip opening
displacement.
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