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Abstract

This paper presents an investigation into shape memory alloy (SMA) springs
considering the effects of geometry changes under small as well as large
deformations. Helical springs were fabricated by shape setting of NiTi wires
through heat treatment. The products exhibited pseudoelasticity at the
ambient temperature, and their force-displacement responses were examined
by performing simple tension tests. A model was further proposed to
study tension and compression of SMA springs, and it was shown that the
consequences of geometrical changes in tension and compression of springs
are different. The numerical results of large and small deformation models
were verified by experimental tensile results. In order to design a spring with
maximum dissipative performance, a designer has three geometric parameters
to set: wire diameter, spring diameter, and the number of active coils. The
influences of these parameters on dissipated energy were studied in both
displacement- and force-control loadings, and a framework for designing SMA
springs with the purpose of achieving maximum applicable dissipation was at
last developed.

Nomenclature
Notation
Af Austenite final temperature As Austenite start temperature
CAf Finish slope of the reverse transformation

strip
CAs Start slope of the reverse transformation

strip
CMf Finish slope of the forward transformation

strip
CMs Start slope of the forward transformation

strip
d Wire diameter of the helical spring D Diameter of the helical spring
D0 Initial diameter of the helical spring E Young’s modulus of SMA
EA Austenite Young’s modulus EM Martensite Young’s modulus
F Axial force G Shear modulus of SMA
GA Austenite shear modulus GM Martensite shear modulus
L The length of wire that spring has been fabri-

cated from
r Radial coordinate along the wire cross-

section
Ms Martensite start temperature N Number of active coils
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Nomenclature
Notation
Mf Martensite final temperature Rf R-phase final temperature
Rs R-phase start temperature T Temperature
T ′ Torque
Greek Letters
α Helix angle α0 Initial helix angle
γ Shear strain γ∗ Maximum recoverable shear strain
γtr Transformation shear strain δ Displacement
ϵ Total strain ϵ∗ Maximum recoverable strain
ϵe Elastic strain

1. Introduction

Shape memory alloys (SMAs) are a category of smart
materials that have been used in various fields over
the past decades. Due to having two main extraor-
dinary responses of shape memory effect (SME) and
pseudoelasticity, they are used in manufacturing actu-
ators, sensors, hybrid composites, coupling, fasteners,
and damping systems [1, 2]. They are also employed in
self-healing materials owing to the crack closure effect
[3]. Different geometries of shape memory alloys such
as wire, spring, and tube are available on the market.
Although wire is, by far, the most usable geometry, it
is not able to appropriately resist compression. SMA
springs, unlike SMA wires, are capable of tolerating
compression. They are also able to withstand elon-
gations as large as 1250% [4]. SMA springs have been
employed in a wide range of applications, including sen-
sors, actuators, and passive as well as active isolators
(especially in the civil engineering context) [2, 5].

Zhuang et al. [6] employed a sliding-type bearing
using SMA springs for seismic protection systems and
studied the proposed prototype by experiments as well
as numerical simulations. An excellent energy dissipa-
tion capacity was also observed from the employed pro-
totype [6]. Attanasi et al. [7] investigated the compres-
sive and tensile response of SMA springs experimen-
tally. A numerical analysis was performed applying a
finite element model and found asymmetric response of
an SMA spring under tensile and compressive loadings
[7]. Attanasi et al. [7] also observed buckling in their
numerical and experiment results. An SMA spring
experiences geometric changes upon large amounts of
applied displacements, which can considerably affect
the force-displacement response of spring. Some ef-
forts were made to simulate the mechanical response
of SMA springs in large deformations; as Savi et al. [8]
reported that the larger geometric nonlinear effects are
associated with larger spring index values. They em-
ployed finite element method and studied large defor-
mation effects in springs with different geometries [8].
Wang et al. [9] proposed a thermomechanical coupled
finite deformation model for SMAs, and implemented
their model into ABAQUS to predict the mechanical

as well as thermal response of SMA springs. Due to
some challenges including computational costs of em-
ploying FEM, it has been a tendency towards propos-
ing simple models so some efforts have been made to
present a 1D model considering large deformation ef-
fects [10, 11]. An et al. [10] proposed an explicit cor-
relation for the calculation of applied force (in the case
of displacement-control loadings) using some simplifi-
cation assumptions, which do not necessarily coincide
with the reality. As a matter of fact, since every point
in the cross-section of an SMA spring experiences a
different response, there cannot be an explicit formu-
lation for the calculation of force as a function of de-
flection. Although the force-displacement response of
a pseudoelastic spring can be predicted by straightfor-
ward hysteresis models, like Preisach approach, these
models are not able to consider the effects of mate-
rial and geometrical parameters on the predicted re-
sults [12]. Heidari et al. [13] studied the response
of SMA springs neglecting large deformation effects.
They verified their numerical results with experimental
findings under quasi-static conditions, and good agree-
ments were reported between experiments and numer-
ical findings [13].

One of the most important applications of pseu-
doelastic springs is in seismic and isolation systems.
In such applications, an SMA spring is simultaneously
serving as an absorbing and dissipating component.
Dissipative performance of an SMA spring depends on
the material parameters, ambient temperature, loading
conditions, and of course the spring geometry. For the
purpose of designing an SMA spring with desired dis-
sipation energy, a designer has three geometric param-
eters to set: wire diameter (d), spring diameter (D),
and the number of active coils (N). Proposing a design
framework for the purpose of optimizing the dissipa-
tive energy of SMA springs is a crucial issue to which
less attention has been paid so far.

The present work aims to propose a 1D numerical
model for SMA springs considering the effects of large
deformation through developing Heidari’s model [13].
Unlike Heidari’s formulation, the current model is ca-
pable of predicting the force-displacement response of
SMA springs under large amounts of displacement, ow-
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ing to the consideration of spring diameter variations
as well as initial helix angle in loading and unload-
ing. Required experimental samples were fabricated
and quasi-static tensile tests were conducted. Numer-
ical results were verified by comparing them with the
experimental findings. The influence of spring geome-
try on the dissipative performance was studied under
displacement- and force-control loadings, and a guide-
line for geometry design process is presented in the re-
sults section.

2. Experiments

Heidari et al. [13] investigated the fabrication process
of SMA springs showing SME at the ambient tem-
perature. Jahanbazi et al. [14] studied the effects
of cooling rate, cold work, temperature, and duration
time of heat treatment on the transformation tempera-
tures of fabricated SMA springs. They also presented a
guideline for fabricating SMA springs exhibiting a de-
sired response at the ambient temperature. Founded
on these findings, NiTi SMA wire showing pseudoelas-
tic response at the ambient temperature was used for
the fabrication of SMA springs. At first, the wire was
wound around a dedicated screw and constrained by
side nuts. The set was then placed inside the furnace
which was stabled at 750◦C. The furnace was turned
off after ten minutes, and 270 minutes were given to
the whole system for cooling to the ambient tempera-
ture. The employed instruction for fabricating an SMA
spring showing the pseudoelastic response at the room
temperature was used from Jahanbazi’s investigation
[14]. Fig. 1 shows a fabricated spring. Tensile tests
were accomplished on three fabricated springs using a
SANTAM STM-50 simple testing machine at the am-
bient temperature and also elevated temperatures with
the speed of 1mm/min. The repeatability of the fab-
ricating process was verified by comparing the tensile
responses of three specimens at the ambiant tempera-
ture. Fig. 2 demonstrates the response of specimens
at three temperatures of 43, 59, and 68◦C. It is notice-
able that the specimens showed pseudoelastic response
at temperatures higher than 16◦C.

Fig. 1. Fabricated SMA spring exhibiting pseudoelas-
tic response at the ambient temperature.

Fig. 2. Force-displacement response of the fabricated
springs at different temperatures.

3. Modeling

The total strain of an SMA wire can be expressed as
decompositions of elastic (ϵe) and transformation (ϵtr)
components [15]. The transformation strain can be
written as Eq. (3):

ϵ = ϵe + ϵtr (1)

ϵe =
σ

E
(2)

ϵtr = ϵ∗ξs (3)

In which ϵ∗, E, σ, and ξs represent maximum re-
coverable strain, the Young’s modulus, stress, and
stress-induced martensite volume fraction, respec-
tively. Young’s modulus is a function of martensite
volume fraction and can be written as:

1

E
=

ξ

EM
+

1− ξ

EA
(4)

ξ = ξs + ξt (5)

where EM , EA, ξt, and ξ represent Young’s modulus
of pure martensite, Young’s modulus of pure austenite,
temperature-induced martensite volume fraction, and
martensite volume fraction, respectively. Martensite
volume fraction can be calculated through the correla-
tions proposed by Brinson and Chung [15, 16].

Heidari et al. [13] generalized Brinson’s model for
shear loading by engaging von-Mises equivalent stress
and strain:

γ = γtr +
τ

G
(6)

γtr = γ∗ξs(σeq) = γ∗ξs(τ
√
3) (7)

γ =
τ

G(ξ)
+ γ∗ξs(T, τ

√
3) (8)

in which γ, γtr, σeq, τ , T , G, and γ∗ are the total shear
strain, transformation shear strain, von-Mises equiv-
alent stress, shear stress, temperature, elastic shear
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modulus, and maximum recoverable shear strain, re-
spectively. The axially-applied force on the spring can
be calculated by Eqs. (9) and (10) [13]:

F =
4π

D

∫ d
2

0

τr2dr (9)

F
D

2
= T ′ (10)

in which F , T ′, D, d, and r represent applied force,
torque, the spring diameter, the wire diameter and
radial coordinate in spring cross-section, respectively.
Heidari et al. [13] neglected the geometric nonlineari-
ties and considered a constant value for spring diame-
ter. However, some crucial geometry changes happen
in a spring undergoing a large amount of deflection.
Variations in the spring geometry under tension differ
from what happens in compression. For instance, in
tension, the spring diameter decreases with increase in
the amount of applied deflection; but, in compression,
the spring diameter increases as deflection increases.
Wahl et al. [17] proposed Eq. (11) which considers the
effect of initial helix angle. By tracing the helix angle
of a spring in different stages of loading, the associated
spring diameter can be calculated by Eqs. (12) and
(13).

γ(α) =
d

D0
cosα0(sinα− sinα0) =

d

D0

δ

L
cosα0 (11)

δ = L(sinα− sinα0) (12)

D

D0
=

cosα

cosα0
(13)

where D0, α0, α, L, and δ represent initial spring di-
ameter, initial helix angle, helix angle, the length of
wire that spring has been fabricated from, and applied
displacement, respectively. Modeling the mechanical
response of SMA springs considering large deforma-
tion effects was performed by applying Eqs. (11-13)

into Heidari’s model using programming in MATLAB.
The numerical calculations started with defining re-
quired integral points at the spring cross-section. By
incrementally increasing the applied displacement, the
shear strain was calculated for integral points using
large deformation correlations, and consequently the
shear stress distribution at the spring cross-section was
obtained by employing the constitutive equation. The
value of axially applied force to the spring was calcu-
lated by shear stress distribution at the spring cross-
section. Since some material parameters of fabricated
springs, such as transformation temperatures, differ
from those of the straight wire, a set of material param-
eters associated with the fabricated springs is needed.

The transformation temperatures were obtained
from differential scanning calorimetry (DSC) test and
are listed in Table 1. Rs and Rf are the R-phase start
and finish temperatures respectively. The phase dia-
gram of the specimens is shown in Fig. 3, where dif-
ferent slopes for martensite and austenite strips are
considered [18, 19]. The material and geometrical pa-
rameters associated with fabricated springs are listed in
Table 2. Ms, Mf , As, Af , σcr

s , and σcr
f represent the

start and finish temperatures of martensite transfor-
mation, the start and finish temperatures of austenite
transformation, the start and finish stresses of detwin-
ning, respectively. Also, CMs, CMf , CAs, and CAf

are the shown slopes in Fig. 3. CMs and CAf were
obtained from experimental results of Fig. 2 by cal-
culating the start stresses of forward transformation
and finish stresses of backward transformation at dif-
ferent temperatures. Since all material parameters of
SMA springs, including σcr

s , σcr
f , and ϵ∗ cannot be de-

termined by experimental tensile test, the values of
these parameters were obtained for the raw wire by
conducting tensile tests, and they were extended to
SMA springs. However, EA and EM were determined
by slopes of force-displacement responses of specimens
at the primary stages of loading as well as unloading
cycles.

Table 1
Transformation temperatures of the specimens.
Rs(◦C) Rf (◦C) Af (◦C) As(◦C) Rs(◦C) Rf (◦C) Ms(◦C) Mf (◦C)
-7 4 16 7 22 -6 -37 -

Table 2
Material and geometrical parameters of the fabricated springs.
EA(GPa) EM (GPa) σcr

s (MPa) σcr
f (MPa)

39.6 20 20 80
Af (◦C) As(◦C) Ms(◦C) Mf (◦C)
16 7 -37 -
CMs(MPa/K) CMf (MPa/K) CAs(MPa/K) CAf (MPa/K)
3.9 7.3 15 7.8
ϵ∗ d(mm) D(mm) N
0.057 1.5 8.6 3
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Fig. 3. Phase diagram.

4. Results and Discussion

The characterized material parameters of fabricated
springs were imported into large and small deforma-
tion models, and the numerical results were compared
with experimental findings. Fig. 4 shows these obser-
vations at the ambient temperature of 27◦C. There is
an error of 7% in force prediction through small de-
formation model at the given displacement of 18mm,
and it is reduced to 2% by considering the geometrical
effects of large deformation. The reason of selecting
final displacement for the error calculations is to pre-
vent the errors of neglecting R-Phase (rhombohedral)
and large deformation effects to be combined. In other
words, the authors believe that the difference between
experiment and predicted values of force in displace-
ments in the range of 5-10mm is caused by R-Phase,
and it is reduced at larger displacements. With respect
to Fig. 4 and the trends of illustrated curves, error in
predicting the applied force through small deformation
model increases by increasing the amount of applied
displacement and, as is expected, it is more crucial to
consider large deformation effects when large amounts
of displacement appear in the spring.

Since the material parameters given in Table 2 were
reported for an SMA associated to a phase diagram
with different slopes for start and finish lines of stress,
another empirical set of material parameters with the
same slopes for start and finish lines were employed
for the rest of study (Table 3). This prevents from
combining different effects on the results and helps the
influences of each individual parameter to be distin-
guishable. A spring with an index of 6 and five active
coils was considered for the case study, and numerical
results were obtained at 72◦C. By taking a closer look
at Fig. 5, it can be found that unlike loading, in un-

loading, outer ring at the spring cross-section is not the
region from which transformation from martensite to
austenite starts. In other words, in loading, transfor-
mation starts from the outer ring at the spring cross-
section and propagates to the central point; but, in un-
loading, the transformation initiates from somewhere
near the outer ring and bilaterally spreads (Fig. 5b).

Fig. 4. Comparison between small and large deforma-
tion models with experiment at 27◦C.

The effects of large deformation in helical springs
are not necessarily negligible under either tensile or
compressive loadings. However, unlike compression,
increase in helix angle under tension causes the spring
diameter to decrease. On the other hand, according to
Eq. (11), in springs with small initial helix angle, the
impact of initial helix angle on the shear strain is negli-
gible. Thus, as is shown in Fig. 6a, at the early stages
of tensile loadings, the response of an SMA spring can
be predicted employing small deformation model; how-
ever, by increasing the amount of applied displacement,
small deformation model predicts the force with a con-
siderable error of 27% (at 97mm deflection). Compres-
sion springs generally have larger initial helix angles
in comparison to tensile ones. Thus, according to Eq.
(11), due to the impact of initial helix angle on the
shear strain, in compressive springs, small deformation
model predicts the response with a remarkable error
even at the early stages of loading (Fig. 6b). The
spring diameter increases with decrease in helix angle
and, unlike tension, there is a gentle growth in force
response for compressive springs. Fig. 6c reveals that
the current model is also able to be employed for the
shape memory effect (SME).

Table 3
Material and geometrical parameters employed for generating figures 5-14.
GA(MPa) GM (MPa) Mf (K) Ms(K) As(K) Af (K) CM (MPa/K)
10797 9210 274.5 289.9 322.2 332.6 7.23
CA(MPa/K) σcr

s (MPa) σcr
f (MPa) ε∗ N D(mm) d(mm)

4.3 5 116 0.069 5 9 1.5
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Fig. 5. (a) Force-displacement response and (b) Stress distribution at the cross-section of a pseudoelastic
tensile spring under loading and unloading at 72◦C.

Fig. 6. Comparison between small and large deformation models for: (a) The tensile pseudoelastic response,
(b) The compressive pseudoelastic response of an SMA spring with initial length of 84 mm, (c) Tensile SME
response of an SMA spring at 17◦C.

Table 4
Geometrical parameters used for generating Figs. 7-12.

Force-control Displacement-control
D(mm) d(mm) N Ff (N) D(mm) d(mm) N δf (cm)
9-15 1.5 5 90 9-15 1.5 5 12
15 1.5-2.5 5 120 15 1.5-2.5 5 21
15 1.5 5-10 40 15 1.5 5-10 20

Due to the importance of dissipated energy of an
SMA spring in applications such as seismic devices and
isolators, further investigation was performed on the
effect of spring geometry on the dissipated energy of
tensile springs. It is notable to mention that, in order
to design an SMA spring with high dissipative perfor-
mance, it is more straightforward for a designer to op-
timize the geometry than to change the type of the em-
ployed wire; because modeling a SMA spring fabricated
by a different type of wire requires repeating the char-
acterization of material parameters, which is a time
consuming and expensive process. Since a designer
needs to choose one condition between displacement-
and force-control for designing the geometry, these

two conditions were here investigated by employing
large deformation model for different geometries ac-
cording to the details provided in Table 4. Being
force- or displacement-control of a spring refers to the
application. For example, an employed spring in a
mass isolation system, with constant mass and un-
limited displacement, operates in force-control condi-
tion. While, by limiting the final applied displacement,
the operational condition of the spring is converted to
displacement-control.

Figs. 7-12 show the effect of spring geometry on
the force-displacement response as well as dissipated
energy at 345K. As illustrated in Fig. 7a, increase
in spring diameter under displacement-control loadings
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causes a reduction in stiffness. Due to the final dis-
placement limitation and the significant drop in force
values, dissipated energy decreases (Fig. 8a). In the
force-control condition, the effect of decrease in force
values is compensated by the growth in displacement
values (Fig. 7b). This phenomenon leads to a bell-
shaped dissipative response as is demonstrated in Fig
8b. In other words, change in the ascending trend to
the descending one in Fig. 8b is caused by considerably
decrease in force values.

According to Eq. (11), in limited final displace-
ment conditions, shear strain increases with an increase
in wire diameter. Consequently, under displacement-
control loadings, springs with a large wire diameter ex-
perience the transformation sooner than springs with
small ones. As can be seen in Figs. 9a and 10a, the re-
sponse of dissipative performance under displacement-
control loadings is ascending. Although under force-
control loadings, the force values increase by increas-
ing the wire diameter, at a given final force limitation,
the transformation is postponed and dissipation energy
drops significantly (Figs. 9b and 10b). It is notable
that the spring index increases by decreasing wire di-
ameter and, as shown in Fig. 9, springs with a higher
index show more nonlinearity in their response. In par-
ticular, by comparing the force-displacement response
of springs with wire diameter of 1.5 and 2.25mm in Fig.
9b, it can be concluded that, unlike the spring with

2.25mm wire diameter, for the spring with 1.5mm wire
diameter the force-displacement response is nonlinear
even in the course of unloading when transformation
has not started yet.

The most convenient way to optimize dissipative
performance by altering one geometry parameter is to
change the number of active coils. Figs. 11a and 12a
show the effect of the number of active coils on force-
displacement response as well as dissipation of an SMA
spring under displacement-control loading. Springs
with a smaller number of active coils have larger stiff-
ness values; thus, force levels in loading path increase
by decreasing the number of active coils. According to
Fig. 11a, for the displacement range between 0.08m
and 0.16m, unlike loading, although force values in-
crease by increasing the number of active coils in un-
loading path, due to the larger values of force in load-
ing, loading path has a more powerful effect on the
trend of dissipated energy (Fig. 12a). Since, under
force-control loadings, change in the number of ac-
tive coils does not affect stress distribution within the
spring cross-section, applied force on each coil remains
constant, so the number of active coils has a linear in-
fluence on dissipation (Figs. 11b and 12b). In other
words, Fig. 11b illustrates that force-displacement re-
sponse is just scaled in displacement axis by varying
the number of active coils.

Fig. 7. The effect of spring diameter on force-displacement response of an SMA spring under: (a) Displacement-
control and loading (b) Force-control loading.

Fig. 8. The effect of spring diameter on energy dissipation under: (a) Displacement-control loading, (b)
Force-control loading.
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Fig. 9. The effect of wire diameter on force-displacement response of an SMA spring under: (a) Displacement-
control loading and (b) Force-control loading.

Fig. 10. The effect of wire diameter on energy dissipation under: (a) Displacement-control loading and (b)
Force-control loading.

Fig. 11. The effect of number of active coils on force-displacement response of an SMA spring under: (a)
Displacement-control loading and (b) Force-control loading.

Fig. 12. The effect of number of active coils on energy dissipation under: (a) Displacement-control loading
and (b) Force-control loading.
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Fig. 13. Comparison between small and large deformation models for springs with 11mm and 15mm diameter.

Below is a framework for designing a pseudoelastic
spring based on the presented figures:

• The first step is numerical implementation of
the presented model using Eqs. (4-13) (whether
under displacement- or force-control loadings).
It is worth noting that performing numeri-
cal simulation employing presented model for
displacement-control loadings is much easier than
the force-control ones.

• A prototype SMA spring is needed which can be
fabricated through a shape setting process as de-
tailed in the experiment section.

• Material characterization and verification of nu-
merical results can be conducted by using tensile
or compressive tests on the fabricated samples.

• Then, a user should compare dissipative perfor-
mance of the fabricated spring with the desired
one in order to redesign the geometry if required.
Figs. 7-12 provide a guideline according to op-
erative conditions of an SMA spring. For the
purpose of obtaining maximum dissipative per-
formance under force-control loadings through
change in the diameter of the spring and the wire,
optimization of the geometry is needed. In fact,
without calculations, the effects of these two pa-
rameters are not predictable.

• Finally, after redesigning the geometry, a user
can fabricate a spring with the desired dissipa-
tive performance and employ the product in a
suspension or isolator system.

Figs. 7b and 8b can be regenerated employing both
large and small deformation models, and variations of
dissipated energy with change in the spring diameter
under a force-control condition can be compared. Fig.
13 compares the responses for 11mm and 15mm spring
diameters. As shown in Fig. 14, neglecting the effects
of large deformation can greatly change the trend of
dissipative performance of an SMA spring.

Fig. 14. Comparison between small and large defor-
mation models in prediction of the dissipated energy.

5. Conclusions

In this work, considering geometric variations in the
course of loading/unloading, an available model for
SMA springs was generalized for springs undergoing
large amounts of displacement. SMA springs exhibit-
ing pseudoelastic response at the ambient temperature
were fabricated from wire showing the same response
at the room temperature. Some tensile tests were con-
ducted on the fabricated springs, and the numerical
results were shown to be in good agreement with ex-
periment findings. Under small amounts of tensile dis-
placement, the response of SMA spring can be pre-
dicted by small deformation model while, under large
amounts of displacement, the usage of small deforma-
tion model may be accompanied by a remarkable er-
ror. Unlike tension, under compressive loadings, due
to the effect of initial helix angle, employing large de-
formation model is required even at the initial stages
of loading. The presented model is not limited to pseu-
doelastic response and it can also be employed to shape
memory effect. Under displacement-control loadings,
the dissipated energy declines with increasing D or N
but increases with increasing d. Under force-control
loadings, the dissipated energy increases by increas-
ing N ; however, an optimization process for D or d is
needed. The significance of the geometry impact on
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dissipated energy is that, in designing a superelastic
SMA spring with optimized dissipative performance,
the presented geometric study gives a designer a better
vision and guideline for setting the geometrical param-

eter. At last, it was shown that the geometric study
will not be correct unless the large deformation model
is employed.

Appendix A

Fig. A.15. Results of DSC test for a fabricated spring.
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