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Abstract

In the present article, the influences of interlaminar bonding imperfection and
constant magnetic field, as well as hygrothermal environmental conditions,
on the stresses and displacements of a cylindrical shell with surface bounded
sensor and actuator are investigated. The multiphysics analysis was carried
out to explore the effects of moisture, temperature, electrical and mechanical
loadings as well as magnetic field. The shell was simply supported and could
be rested on an elastic foundation. The material properties of the shell and
piezoelectric sensor and actuator were assumed to be functionally graded in
the radial direction according to power-law function. Using the Fourier series
expansion method through the longitudinal direction and the differential
quadrature method (DQM) across the radial direction, governing differential
equations were solved. The validity of the present work was verified by
comparisons with other published works. Numerical results are presented
to illuminate the effects of aspect ratio of shell and magnetic field on the
responses of the hybrid shell.

Nomenclature
a, b, c, d Radiuses of hybrid shell u Displacement
T Temperature C Moisture concentration
k Thermal conductivity coefficients ζ Moisture diffusivity coefficients
Aij , Bij Weighting coefficients for DQM E Young’s modulus
α Coefficient of thermal expansion σi Stress
εi Strain Ei Electric fields
Cij Elastic constants eij Piezoelectric constants
gij Dielectric constants λi Thermal modulus
w̄i Hygroscopic stress constants P1 Pyroelectric constant
P2 Hygroelectric coefficient ψ Electric potential
H⃗ Magnetic intensity vector J⃗ Electric current density vector
kL Winkler spring stiffness µ Magnetic permeability
Di Electric displacement ξ Moisture expansion coefficients
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X k,XT k,
XCk

Elastic, thermal and hygroscopic compliance
constants of imperfect interface, respectively

β, η Inhomogeneity index of FGPM and
FGM layer, respectively

h⃗ Perturbation of the magnetic field vector

1. Introduction

The performance advantages of the functionally graded
material (FGM) together with the intrinsic ability of
piezoelectric materials can be combined by consider-
ing smart structures including FGMs host members
bonded with piezoelectric sensors or actuators. These
smart structures are practically very important as they
are related to vibration control, health monitoring,
thermal stress control, and other engineering fields.
Thus, the ability to predict the behavior of smart struc-
tures in multiphysics environmental conditions and un-
der multifield loads is interesting for engineers and re-
searchers [1-5].

Moreover, FGMs and laminated composites are in-
creasingly used in the structural components of air-
crafts and space vehicles that have severe hygrothermal
conditions and in magnetic storage elements, plasma
physics and the corresponding measurement methods
of magneto-thermo-elasticity [6]. Besides, consider-
ing piezoelectric materials, an applied hygrothermal
load leads to electrical polarization and mechanical
displacement in the uncoupled hygrothermopiezoelec-
tricity analysis [7]. Hygrothermo piezoelectric media
have practical application in the presence of an exter-
nal magnetic field in geophysics, optics, and acoustics.
Therefore, the influence of multiple fields, such as mois-
ture, temperature, magnetic, electric, and mechanical
field should be considered in the multiphysics analysis.
This analysis is a critical step for smart structures to
several applications involving structural health mon-
itoring, intelligent structures, energy harvesting and
green energy production, optics, space vehicles, and
self-powered biomedical devices [8].

Many researches have been conducted in the area
of hygrothermal analysis of FGM and piezoelectric me-
dia. The hygrothermal analysis of FGM plates was
presented by Zenkour [9]. A new higher order shear
and normal deformation theory was developed to simu-
late the thermoelastic bending of FGM sandwich plates
by Houari et al. [10]. Bellifa et al. [11] presented a
new first-order shear deformation theory for bending
and dynamic behaviors of functionally graded plates.
Bakhshizadeh et al. [12] analyzed time-dependent hy-
grothermal creep behavior of pressurized FGM rotat-
ing thick cylindrical shells subjected to uniform mag-
netic field. Sobhy and Alotebi [13] carried out tran-
sient hygrothermal analysis of FG sandwich plates ly-
ing on a visco-pasternak foundation via a simple and
accurate plate theory. Using the discrete-layer finite
element method, Smittakorn and Heyliger [14] investi-
gated the hygrothermo piezoelectric behavior of lami-

nated plates. The hygrothermo elastic analysis of in-
homogeneous piezoelectric and exponentially graded
cylinders were carried out by Zenkour [15]. Wang et
al. [16] analyzed the hygrothermal effects on the dy-
namic interlaminar stresses in laminated plates with
piezoelectric actuator layers. Aeroelastic performances
of smart composite plates under aerodynamic loads
were investigated in hygrothermal environment by Ma-
hato and Maiti [17]. The hygrothermal analysis in
one-dimensional functionally graded piezoelectric me-
dia in a constant magnetic field was conducted by Ak-
barzadeh and Chen [18]. Zenkour [19] presented an-
alytical solutions of hygrothermal effects in heteroge-
neous piezoelectric solid and hollow cylinders.

Furthermore, imperfect bonding is critical in hy-
brid laminates because of the high transverse stresses
developed at the elastic-piezoelectric interfaces under
an electric potential loading. Saadatfar and Aghaie-
Khafri [20] showed that the actuation and sensing au-
thority of smart layers were extensively affected by the
multiphysical imperfection at the interfaces. It was ob-
served that increasing the compliance coefficient of the
imperfection results in reduction in the actuation ca-
pability of the actuator. Therefore, it is essential to
study the effect of multiphysical bonding imperfection
in hygrothermal condition for an accurate prediction of
the structural behavior. Talebitooti et al. [21] studied
the effects of imperfect bonding on sound transmission
across a double-walled cylinder with FGM core using
the three-dimensional theory of elasticity. Besides, ac-
tuators from functionally graded piezoelectric material
(FGPM) could produce large displacements while mini-
mizing the internal stress concentrations would greatly
improve the reliability of distributed piezoelectric actu-
ators and sensors. The application of FGPM layers as
sensor and actuator in hybrid structures is rarely stud-
ied. Recently, Saadatfar and Aghaie-Khafri [22] pre-
sented an analytical solution for the magneto-thermo-
electro-elastic problem of a long FGM cylindrical shell
bonded to FGPM layers.

Some studies have been carried out on the ther-
moelastic analysis of the FG cylindrical shells bonded
with piezoelectric layers. Alibeigloo [23] analyzed the
deformation of a simply-supported FGM cylindrical
shell with piezoelectric layers under thermo-mechanical
loads. Using the DQ method, Akbari Alashti and
Khorsand [24] presented static and dynamic analy-
sis of FGM cylindrical shells with piezoelectric layers
subjected to thermo-mechanical loads. Saadatfar and
Aghaie-Khafri [25, 26] analyzed the magneto-thermo-
electro-elastic problem of a short length FGM cylin-
drical shell bonded to FGPM layers. Saadatfar and

Effect of Interlaminar Weak Bonding and Constant Magnetic Field on the Hygrothermal Stresses of a FG
Hybrid Cylindrical Shell Using DQM: 93–110 94



Aghaie-Khafri [27] studied the hygrothermal stress in
functionally graded hybrid shell. Alibeigloo [28] inves-
tigated bending behavior of functionally graded carbon
nanotube reinforced cylindrical composite panel at-
tached to thin piezoelectric layers subjected to thermal-
mechanical loads and electric field. Shaban and Al-
ibeigloo [29] presented analytical solution for corru-
gated sandwich panels with embedded piezoelectric
using three-dimensional theory of elasticity. Saadat-
far [30] presented the hygrothermal stress analysis for
FGM cylindrical shell with FGPM layer placed in a
constant magnetic field. The material properties of
FGM and FGPM layers were assumed to be exponen-
tially graded in the radial direction.

It is well-known that by using the power law varia-
tion form, more general variation forms can be achieved
rather than the exponential form for gradient of mate-
rial properties of FGMs [31, 32]. Besides, more desir-
able behavior was reported for FGMs with power law
form [33]. Particularly, to achieve the desired behav-
ior, the effect of gradient index on the behavior of FGM
cylindrical shell is more significant for power law form
[34]. So, the power law variation form is more gen-
eral and more applicable than exponentially form for
material properties of FGMs. However, to the best of
the authors’ knowledge, the multiphysics hygrothermo-
electro-elastic analysis of an FGM cylindrical shell im-
perfectly bonded with FGPM layers placed in a con-
stant magnetic field has not yet been reported. In the
present study, the material properties of the FGM shell
and radially polarized FGPM layers were assumed to
be graded in the radial direction according to the power
law function. However, Poisson’s ratio was assumed to
be constant. The highly coupled partial differential
equations were reduced to ordinary differential equa-
tions with variable coefficients by means of trigonomet-
ric function expansion in longitudinal directions. Then,
the DQM was used across the thickness direction to
solve the resulting equations.

Fig. 1. FGM hollow cylinder with FGPM layers.

2. Basic Equations

An axisymmetric FGM shell with the inner and outer
surfaces bonded FGPM layers was considered (Fig.
1). Due to the symmetry of the shell geometry and
the boundary conditions, the moisture concentration,

temperature, mechanical and electrical fields were as-
sumed to be independent of the circumferential coordi-
nate. The shell material was FGM and isotropic. Fur-
thermore, the FGPM layer was transversely isotropic
and the radial direction was the axis of the transverse
isotropy.

2.1. Hygrothermal Problem Equations

The two physical fields, namely moisture and temper-
ature, were obtained independently in an uncoupled
hygrothermal problem [35]. The axisymmetric steady-
state Fourier heat conduction and Fickian moisture dif-
fusion equations without source of heat and moisture
were considered as [20]:

1

r

∂

∂r

(
rkr

∂T

∂r

)
+

∂

∂z

(
kz
∂T

∂z

)
= 0 (1a)

1

r

∂

∂r

(
rζr

∂C

∂r

)
+

∂

∂z

(
ζz
∂C

∂z

)
= 0 (1b)

where T and C represent the temperature and moisture
concentration and kr and kz are the thermal conduc-
tivity coefficients and ζr and ζz are moisture diffusiv-
ity coefficients in the radial and longitudinal directions.
The boundary conditions for the temperature field are:

Tj(r, 0) = Tj(r, L) = 0, j = i, f, o

Ti(a, z) = Ta, To(d, z) = Td,
(2)

and the boundary conditions for the moisture concen-
tration are:

Cj(r, 0) = Cj(r, L) = 0, j = i, f, o

Ci(a, z) = Ca, Co(d, z) = Cd

(3)

where the subscript i, f , and o indicate the corre-
sponding parameters in inner FGPM, FGM, and outer
FGPM layer, respectively. The solutions of the hy-
grothermal problem that are governed by Eqs. (1-3)
and satisfy temperature and moisture concentration
boundary conditions at the end faces are:

Tj =

∞∑
n=1

T̄jn(r) sin(pnz), j = i, f, o (4a)

Cj =
∞∑

n=1

C̄jn(r) sin(pnz), j = i, f, o (4b)

where pn =
nπ

L
. The power law variation is assumed

for all of material constants of FGPM layers as:

Y = Ẏ

(
r

ri

)γ

, γ = βi, βo (5)

where Y and Ẏ are material properties and correspond-
ing magnitudes in the inner surface of each FGPM layer
and βi and βo are inhomogeneity index for the inner
and outer FGPM layer. Moreover, the power law vari-
ation is assumed for the Young’s modulus, coefficient
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of thermal expansion, magnetic permeability, moisture
diffusivity coefficient, thermal conductivity constant
and coefficient of the moisture concentration of FGM
as:

E = Ef

(r
b

)η1

, α = αf

(r
b

)η2

, µ = µf

(r
b

)η3

ζ = ζf

(r
b

)η4

, k = kf

(r
b

)η5

, ξ = ξf

(r
b

)η6

(6)

where subscript f denotes the material properties in
the inner surface of the FGM layer and ηis are their
grading parameters. Poisson’s ratio was taken to be
constant through the shell thickness. Using Eqs. (4-
6), Eqs. (1) are obtained as:(

krj

(
1+γ
r

dT̄j

dr +
d2T̄j

dr2

)
− kzjp

2
nT̄j

)
= 0,

j = i, f, o γ = βi, βo, η5
(7a)

(
ζrj

(
1+γ
r

dC̄j

dr +
d2C̄j

dr2

)
− ζzjp

2
nC̄j

)
= 0,

j = i, f, o γ = βi, βo, η5
(7b)

2.2. FGM Layer

The following relations can express stresses in the shell
in terms of displacements, temperature field, and mois-
ture concentration [27]:

σr =
E(r)

(1 + ν)(1− 2ν)

[
(1− ν)εr + νεθ + νεz

]
− E(r)

1− 2ν

[
α(r)T (r, z) + ξ(r)C(r, z)

]
σθ =

E(r)

(1 + ν)(1− 2ν)

[
νεr + (1− ν)εθ + νεz

]
− E(r)

1− 2ν

[
α(r)T (r, z) + ξ(r)C(r, z)

]
σz =

E(r)

(1 + ν)(1− 2ν)

[
νεr + νεθ + (1− ν)εz

]
− E(r)

1− 2ν

[
α(r)T (r, z) + ξ(r)C(r, z)

]
τzr =

E(r)

2(1 + ν)
γzr

(8)

The strain-displacement relations are defined as:

εr =
∂ur
∂r

, εθ =
u

r
, εz =

∂uz
∂z

,

γzr =

(
∂ur
∂z

+
∂uz
∂r

) (9)

The shell was placed initially in an axial constant mag-
netic field. There was an interaction between deforma-
tion and perturbation of the magnetic field vector in
the shell. Omitting displacement electric currents, the
governing electrodynamic Maxwell equations for a per-
fectly conducting elastic body are given by [36]:

J⃗ = ∇× h⃗, ∇× e⃗ = −µ∂h⃗
∂t
, divh⃗ = 0

e⃗ = −µ

(
U⃗
∂U⃗

∂t
× H⃗

)
, h⃗ = ∇× (U⃗ × H⃗),

(10)

Where µ, H⃗, J⃗ , and h⃗ are magnetic permeability
(H/m), magnetic intensity vector, electric current den-
sity vector, and perturbation of the magnetic field vec-
tor, respectively. Equilibrium equations for axisym-
metric deformations of the shell by taking into account
the Lorentz’s force are written as [37]:

∂σr
∂r

+
∂τrz
∂z

+
σr − σθ

r
+ fr = 0

∂τrz
∂r

+
∂σz
∂z

+
τrz
r

= 0

(11)

where fr is defined as the Lorentz’s force. By applying
an initial magnetic field vector in the cylindrical coor-
dinate system to Eq. (10), the Lorentz’s force can be
written as:

fr = µ(J⃗ × H⃗)

= µH2

(
∂2ur
∂z2

+
1

r

∂ur
∂r

− ur
r2

+
∂2ur
∂r2

, 0, 0

) (12)

Using Eq. (8), Eqs. (11) can be rewritten as:

1

(1 + ν)(1− 2ν)

({
E

[
(1− ν)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)]
+
∂E

∂r

[
(1− ν)

∂

∂r
+
ν

r

]
+
E(1− 2ν)

2

[
∂

∂z2

]}
ur

+

{
E

2

∂2

∂r∂z
+ ν

∂E

∂r

∂

∂z

}
uz

)
+ µH2

(
∂2u

∂z2
+

1

r

∂ur
∂r

− ur
r2

+
∂2u

∂r2

)

− 1

1− 2ν

(
+
dE

dr
(αT + ξC) + E

(
dα

dr
T + α

∂T

∂r
+
dξ

dr
C + ξ

∂C

∂r

))
= 0 (13a)
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1

2(1 + ν)

({
E

1− 2ν

∂2

∂r∂z
+

(
E

(1− 2ν)r
+

1

r

∂E

∂r

)
∂

∂z

}
Ur +

{
2E

(1− 2ν)

[
(1− ν)

∂2

∂z2

]

+ E
∂2

∂r2
+

[
E

r
+

1

r

∂E

∂r

]
∂

∂r

}
Uz

)
− E

1− 2ν

(
α
∂T

∂z
+ ξ

∂C

∂z

)
= 0 (13b)

2.3. FGPM Layers

The constitutive relations describing the hygrothermal,
electrical and mechanical interaction for a piezoelectric
material are [27]:

σr = c11εr + c12εθ + c13εz − e11Er − λrT − w̄rC

σθ = c12εr + c22εθ + c23εz − e21Er − λθT − w̄θC

σz = c13εr + c23εθ + c33εz − e31Er − λzT − w̄zC

τrz = c55γzr − e53Ez

Dr = e11εr + e21εθ + e31εz + g11Er + P1T + P2C

Dz = e53γzr + g33Ez

(14)

where σi, εi, Di, and Ei represent stress, strain, elec-
tric displacement and electric fields, respectively. Cij,
eij and gij denote the elastic, piezoelectric and dielec-
tric constants, respectively. λi, w̄i, P1 and P2 are the
thermal modulus, hygroscopic stress, pyroelectric con-
stants and hygroelectric coefficient, respectively. The
thermal stress and hygroscopic stress coefficients are
related to the elastic coefficient, thermal expansion co-
efficient and moisture expansion coefficient as follows:

λr = c11αr + c12αθ + c13αz = λ̇r

(
r

ri

)2β

λθ = c12αr + c22αθ + c23αz = λ̇θ

(
r

ri

)2β

(15a)

λz = c13αr + c23αθ + c33αz = λ̇z

(
r

ri

)2β

w̄r = c11ξr + c12ξθ + c13ξz = ˙̄wr

(
r

ri

)2β

w̄θ = c12ξr + c22ξθ + c23ξz = ˙̄wθ

(
r

ri

)2β

(15b)

w̄z = c13ξr + c23ξθ + c33ξz = ˙̄wz

(
r

ri

)2β

Considering the electric potential Ψ, the electric field
E is given by [23, 24]:

Er = −∂ψ
∂r
, Ez = −∂ψ

∂z
(16)

For the FGPM layers, in the absence of free charge den-
sity, the charge equation of electrostatics is [23, 24]:

1

r

∂

∂r
(rDr) +

∂Dz

∂z
= 0 (17)

Using Eqs. (14-16), Eq. (11) and Eq. (17) can be
written as:

(
ċ11

∂2

∂r2
+

(β + 1)ċ11
r

∂

∂r
+
βċ12 − ċ22

r2
+ ċ55

∂2

∂z2

)
ur

+

(
1

r

(
(β + 1)ċ13 − ċ23

) ∂
∂z

+ (ċ13 + ċ55)
∂

∂r∂z

)
uz

+

(
ė11

∂2

∂r2
+

1

r

((
(β + 1)ė11 − ė21)

∂

∂r

)
+ ė53

∂2

∂z2

)
ψ

+ µ̇H2

(
∂2ur
∂z2

+
1

r

∂ur
∂r

− ur
r2

+
∂2ur
∂r2

)

+

(
r

ri

)β [(
1

r
(λ̇θ − (2β + 1)λ̇r)− λ̇r

∂

∂r

)
T

+

(
1

r
( ˙̄wθ − (2β + 1) ˙̄wr)− ˙̄wr

∂

∂r

)
C

]
= 0 (18a)

(
1

r

((
(β + 1)ċ55 + ċ23

) ∂
∂z

+ (ċ55 + ċ13)
∂

∂r∂z

)
ur

+

(
β + 1

r
ċ55

∂

∂r
+ ċ55

∂2

∂r2
+ ċ33

∂2

∂z2

)
uz

+

(
β + 1

r
ė53

∂

∂z
+ (ė53 + ė31)

∂

∂r∂z

)
ψ

−
(
r

ri

)β
∂

∂z
(λ̇zT + ˙̄wzC) = 0 (18b)

(
(β + 1)ė11 + ė21

r

∂

∂r
+ βė21

1

r2
+ ė11

∂2

∂r2
+ ė53

∂2

∂z2

)
ur

+

(
(ė53 + ė31)

∂

∂r∂z
+ ė31

β + 1

r

∂

∂z

)
uz

−
(
(β + 1)ġ11

r

∂

∂r
+ ġ11

∂2

∂r2
+ ġ33

∂2

∂z2

)
ψ

+

(
β + 1

r
+

∂

∂r

)
(Ṗ1T + Ṗ2C) = 0 (18c)
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The simply supported and electrically insulated bound-
ary conditions can be written as:

ur = σz = ψ = 0 at z = 0, L (19)

Since the outer surface of the hybrid shell was as-
sumed to be subjected to a Winkler elastic foundation,
the surface boundary conditions can be considered as:

σr = −p, τzr = 0, ψ = V, at r = a

σr = −kLur, τzr = 0, Dr = 0, at r = d
(20)

where Winkler spring stiffness is indicated by kL. Since
imperfectly bonded interfaces may show extensive ef-
fects on the reliability of the designed smart layered
structures, imperfections of bonded interfaces are also
considered. The imperfect multiphysics interfacial con-
ditions can be simulated by the generalized spring layer
model [38]. For the imperfect interfaces, the displace-
ments and moisture concentration as well as the tem-
perature field at the interfaces may be discontinuous
while the tractions at the interfaces, moisture flux, and
the heat flux are always continuous. The following in-
terfacial conditions are considered at the interfaces of
all adjacent layers between kth and (k+1)th interfaces:

σr|k+1 = σr|k, τrz|k+1 = τrz|k, ψ|k+1 = ψ|k,

ur|k+1 − ur|k = X k
r σr, (21a)

uz|k+1 − uz|k = X k
z , τrz,

kr
∂T

∂r

∣∣∣∣
k+1

= k1
∂T

∂r

∣∣∣∣
k

, Tk+1 − Tk = X k
T kr

∂T

∂r

∣∣∣∣
k+1

(21b)

ζr
∂C

∂r

∣∣∣∣
k+1

= ζr
∂C

∂r

∣∣∣∣
k

, Ck+1 − Ck = X k
Cζr

∂T

∂r

∣∣∣∣
k+1

(21c)

k = 1, 2, at r = b, c

where X k
i (i = r, z), X k

T and X k
C are elastic, thermal

and hygroscopic compliance constants of the imperfect
interfaces. Obviously, for perfectly bonded interface
there is: X k

i (i = r, z) = 0, X k
T = 0 and X k

C = 0. A non-
zero normal compliance coefficient, X k

r , characterizes
the normal opening delamination, whereas the shear
slip delamination is characterized by non-zero tangen-
tial compliance coefficients X k

z .

3. Solution of Governing Differential
Equations

The solution satisfying the boundary conditions may
be assumed as:

ur =

∞∑
n=1

Ur(r) sin(bnz)

uz =
∞∑

n=1

Uz(r) cos(bnz) (22)

ψ =

∞∑
n=1

Ψ(r) sin(bnz)

where bn =
nπ

L
. Substituting Eq. (22) into governing

equations, partial differential equations are reduced to
ordinary differential equations and governing equations
for the FGM shell can be expressed as:

1

(1 + ν)(1− 2ν)

({
E

[
(1− ν)

(
d2

dr2
+

1

r

d

dr
− 1

r2

)]

+
∂E

∂r

[
(1− ν)

d

dr
+
ν

r

]
− b2n

E(1− 2ν)

2

+ (1 + ν)(1− 2ν)µH2

(
−b2n +

1

r

d

dr
− 1

r2
+

d2

dr2

)}
Ur

+

{
−Ebn

2

d

dr
− ν

∂E

∂r
bn

}
Uz

)

− 1

1− 2ν

(
dα

dr
E +

dE

dr
α+ Eα

d

dr

)
T̄

− 1

1− 2ν

(
dξ

dr
E +

dE

dr
ξ + Eξ

d

dr

)
C̄ = 0 (23a)

1

2(1 + ν)

({
Ebn

1− 2ν

d

dr
+

(
E

(1− 2ν)r
+

1

r

∂E

∂r

)
bn

}
Ur

+

{
−2E

(1− 2ν)
[(1− ν)b2n] + E

d2

dr2
+

[
E

r
+

1

r

∂E

∂r

]
d

dr

}
Uz

)

− Ebn
1− 2ν

(αT̄ + ξC̄) = 0 (23b)

and corresponding equations for the FGPM layers can
be expressed as:(

ċ11
d2

dr2
+

(β + 1)ċ11
r

d

dr
+
βċ12 − ċ22

r2
− ċ55b

2
n

+ µH2

(
− b2n +

1

r

d

dr
− 1

r2
+

d2

dr2

))
Ur

−

(
bn
r
((β + 1)ċ13 − ċ23) + bn(ċ13 + ċ55)

d

dr

)
Uz
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+

(
ė11

d2

dr2
+

(β + 1)ė11 − ė21
r

d

dr
− ė53b

2
n

)
Ψ

+

(
r

ri

)β
[(

1

r
(λ̇θ − (2β + 1)λ̇r)− λ̇r

d

dr

)
T̄

+

(
1

r
( ˙̄wθ − (2β + 1) ˙̄wr)− ˙̄wr

d

dr

)
C̄

]
= 0 (24a)

{(
bn
r
((β + 1)ċ55 + ċ23) + bn(ċ55 + ċ13)

d

dr

)
Ur

(
β + 1

r
ċ55

d

dr
+ ċ55

d2

dr2
− ċ33b

2
n

)
Uz

+

(
bn
β + 1

r
ė53 + bn(ė53 + ė31)

d

dr

)
Ψ

}

− bn

(
r

ri

)β

(λ̇zT̄ + ˙̄wzC̄) = 0 (24b)

{(
(β + 1)ė11 + ė21

r

d

dr
+
βė21
r2

+ ė11 − ė53b
2
n

)
Ur

−
(
bn(ė53 + ė31)

d

dr
+ bnė31

β + 1

r

)
Uz

−
(
(β + 1)ġ11

ri

d

dr
+ ġ11

d2

dr2
− ġ33b

2
n

)
Ψ

}

+

(
β + 1

r
+

d

dr

)
(Ṗ1T̄ + Ṗ2C̄) = 0 (24c)

According to the DQM, the nth-order derivative of the
function f(x) at any sample point can be approximated

by the following formulation [39]:

dnf(xi)

dxn
=

N∑
j=1

A
(n)
ij f(xj)

i = 1, · · · , N, n = 1, · · · , N − 1

(25)

where Aij are the weighting coefficients associate with
the nth-order derivatives, and N is the number of grid
points in the x direction. Using the Lagrange interpo-
lation polynomials as approximating functions, the fol-
lowing algebraic formulations can be used to compute
the first and the second order weighting coefficients
[39]:

A
(1)
ij =

∏
(xi)

(xi − xj) ·
∏
(xj)

i, j = 1, · · · , N and j ̸= i

A
(2)
ij = 2

[
A

(1)
ii ·A(1)

ij −
A

(1)
ij

xi − xj

]
2 ≤ n ≤ N − 1

A
(1)
ii −

N∑
j=1, j ̸=i

A
(1)
ij k = 1, · · · , N − 1

∏
(xi) =

N∏
j=1, j ̸=i

(xi − xj)

(26)
A significant factor for the accuracy of the DQ solution
is the choice of the sampling or grid points. For the nu-
merical computation, the Chebyshev–Gauss–Lobatto
points with the following coordinates were used [39]:

xi =
L

2

(
1− cos

[
(i− 1)π

(N − 1)

])
i = 1, 2, 3, · · · , N (27)

Using the DQ technique, the equations of the FGM
layer, FGPM layers, thermal and moisture concentra-
tion fields can be expressed as: FGM layer:

E0

(r
b

)η1

(1 + ν)(1− 2ν)

({[
(1− ν)

(
N∑
j=1

B
(2)
ij +

1

ri

N∑
j=1

B
(1)
ij − 1

r2i

)]
+
η1
r1

[
(1− ν)

N∑
j=1

B
(1)
ij +

ν

ri

]

− b2n
(1− 2ν)

2
+

(1 + ν)(1− 2ν)

E0
µfH

2
(ri
b

)η3−η1

(
− b2n +

N∑
j=1

B
(2)
ij +

1

r

N∑
j=1

B
(1)
ij − 1

r2i

)}
Urj

+

{
− bn

2

N∑
j=1

B
(1)
ij − ν

η1
ri
bn

}
Uzj − α0(1 + ν)

(ri
b

)η2

η2
ri

+
η

ri
+

N∑
j=1

B
(1)
ij

 T̄

− ξ0(1 + ν)

ri
b
)η6

η2
ri

+
eta1
ri

+

N∑
j=1

B
(1)
ij

 C̄

 = 0 (28a)
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FGPM layer:(
(ċ11 + µ̇H2)
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A
(2)
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ri
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−
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ij
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ė11 N∑
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ri
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)β( 1
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A
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A
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)
= 0 (29a)
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Ψj
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(ri
a
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(λ̇zT̄ + ˙̄wzC̄ = 0 (29b)
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βė21
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r
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 (Ṗ1T̄ + Ṗ2C̄) = 0 (29c)

Thermal and moisture concentration field:(
krj

(
1 + γ

ri

N∑
j=1

A
(1)
ij +

N∑
j=1

A
(1)
ij

)
− kzjp

2
n
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(
ζrj

(
1 + γ

ri
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j=1

A
(1)
ij +

N∑
j=1

A
(1)
ij

)
− ζzjp

2
n

)
C̄i = 0 (30b)

In the above equations, Aij and Bij are weighting co-
efficients for FGPM and FGM layers, respectively. In
a similar way, the boundary conditions can be dis-
cretized. So, the boundary conditions at r = a and
r = d become:[(

ċ11

N∑
j=1

A
(1)
ij +

ċ12
a

)
Ur − ċ13bnUz + ė11

N∑
j=1

A
(1)
ij Ψ

]

− λ̇rT̄ − ˙̄wrC̄ = −p,

[
ċ55

(
bnUr +

N∑
j=1

A
(1)
ij Uz

)
+ ė53bnΨ

]
= 0, (31)

Ψ = V,[(
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N∑
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C
(1)
ij +

ċ12
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− (kLUr)

)
Ur − ċ13bnUz + ė11
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A
(1)
ij Ψ

]

−
(
d

c

)β

(λ̇rT̄ + ˙̄wrC̄) = 0

[
ċ55

(
bnUr +

N∑
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A
(1)
ij Uz
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+ ė53bnΨ
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= 0, (32)

[(
ė11
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A
(1)
ij +

ė21
d

)
Ur − ė31bnUz − ġ11

N∑
j=1

A
(1)
ij Ψ

]

+ Ṗ1T̄ + Ṗ2C̄ = 0, (33)
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Domain and boundary degrees of freedom were sep-
arated and in vector forms, they were denoted as (d)
and (b), respectively. Based on this definition, the ma-
trix form of governing equations and related boundary
conditions take the following form:[

[Abb] [Abd]
[Adb] [Add]

]{
{Ub}
{Ud}

}
=

{
{Fb}
{Fd}

}
(34)

where,
{Ub} = {{Urb, {Uzb}, {ψb}}T

{Ud} = {{Urd, {Uzd}, {ψd}}T
(35)

By eliminating the column vector {Ub}, the matrix Eq.
(33) is reduced to the following system of algebraic
equations:

[A]{Ud} = {F} (36)

where,

[A] = [Add]− [Adb][Abb]
−1[Abd]

{F} = {Fd} − {Adb}[Abb]
−1{Fb}

(37)

Eq. (35) is a system of algebraic equations which can
be solved using various direct or iterative methods.
Since the size of resulting algebraic equations is large,
the direct methods may not be efficient. Thus, iter-
ative methods such as the Gauss–Seidel method were
recommended for the solution of the resultant algebraic
equations.

4. Numerical Results and Discussion

In this section, some numerical examples are consid-
ered to explore the effects of key parameters on the
present analysis. The material properties of FGPM
layers, as actuator and sensor layers, are assumed to
be as listed in Table 1 [27]. Moreover, the material
constants of the inner surface of the FGM layer are as-
sumed to be: E0 = 125.83(GPa), α0 = 10×10−6(1/K),
k0 = 25(W/mK), ζ0 = 2.2 × 10−8kg/(ms◦M), ξ0 =

33 × 10−5m3/kg for Zirconia. However, the mate-
rial constants of the outer surface are considered as:
Eh = 227.24(GPa), αh = 15 × 10−6(1/K), kh =
2.09(W/mK), ζh = 12.2 × 10−8kg/(ms◦M) and ξh =
44× 10−5m3/kg for Monel.

The material properties of the host shell were as-
sumed to vary according to the power law and material
properties parameters η1, η2, η4, η5 and η6 are:

η1 =
ln(Eh/E0)

ln(c/b)
, η2 =

ln(αh/α0)

ln(c/b)
, η4 =

ln(ζh/ζ0)

ln(c/b)
,

η5 =
ln(kh/k0)

ln(c/b)
, η6 =

ln(ξh/ξ0)

ln(c/b)

In this work, it was considered that η3 = 1. It should
be noted that 40 terms were considered in the series ex-
pansion and all numerical results were calculated and
presented for the value of z = L/2. In all numerical
simulations, unless otherwise stated, the values were
a = 0.9m, d = 1.1m, hFGM = 20hFGPM and L = 6m.
The aspect ratio (S) of the shell was defined as: (middle
radius)/(thickness of shell). Furthermore, the follow-
ing dimensionless quantities are introduced:

R =
r − a

d− a
, u∗i =

ui(r)

hFGM
(i = r, z),

σ∗
j =

σj
P
, (j = r, θ, z, rz), T ∗ =

T

Ta
, M∗ =

M

Ma
·

To show the convergence and correctness of the present
approach, numerical results for the static behavior of
the FGM shell with homogeneous piezoelectric layers
under thermomechanical boundary conditions are pre-
sented and compared with the results reported in Ref.
[23, 24]. In this case, βi = βo = kL = H = 0. Fig. 2
and Table 2 show a good agreement between the dis-
tribution of temperature and radial stress with the lit-
erature. It is obvious from Fig. 2b and Table 2 that by
increasing the number of grid points, results of the DQ
method converge rapidly and approach to the reported
results.

Table 1
Materials constants.
Property (GPa) ċ11 ċ12 ċ13 ċ22 ċ23 ċ33 ċ55
Sensor 115 74 74 139 78 139 25.6
Actuator 135 52 5 247 104 239 66
Property* ė11 ė21 ė31 ė53 ġ11 ġ33 Ṗ1 Ṗ2

Sensor 15.1 -5.2 -5.2 12.7 5.6 6.5 5.4 -2.5
Actuator 4.3 -0.3 -0.4 2.8 0.28 1.96 5.4 -2.5
Property* α̇r α̇θ = α̇z k̇θ = k̇z k̇r ξ̇r ξ̇θ = ξ̇z ζ̇θ = ζ̇z = ζ̇r ρ̇p
Sensor 2.62 1.99 2.1 0.8 1.1 430 7500
Actuator 2.45 4.39 8.6 13.9 0.8 1.6 1731 5300

* The units are: e in C/m2, g×10−9 in C2/Nm2, P1 × 10−5 in C2/m2K, P2 × 10−5 in Cm/kg, α× 10−6 in 1/K,
k in W/mK, ξ × 10−4 in m3kg, ζ × 10−11 in kg/(ms◦M) and ρ in kg/m3.

Journal of Stress Analysis/ Vol. 3, No. 1/ Spring − Summer 2018 101



Fig. 2. (a) Temperature, (b) Radial stress.

Table 2
Verification of the results.

R=0.2 R=0.4 R=0.6 R=0.8
Present 0.617453 0.352522 0.21255 0.127552

T Ref. 23 0.625014 0.367534 0.200022 0.107571
Ref. 24 0.655038 0.395075 0.235015 0.135004
Ref. 24 -0.85596 -0.67854 -0.48643 -0.24849
Ref. 23 -0.83305 -0.66186 -0.46559 -0.22549

σ∗
r N=25 -0.81844 -0.65554 -0.46144 -0.22341

N=15 -0.78082 -0.59917 -0.39876 -0.19004
N=11 -0.72653 -0.54704 -0.36953 -0.1858

Table 3
Effect of inhomogeneity index of actuator on the stresses and displacements at the midpoint of the shell.

S = 5 S = 10 S = 15
βi = −3 βi = 0 βi = 3 βi = −3 βi = 0 βi = 3 βi = −3 βi = 0 βi = 3

σ∗
r -1.034 -1.046 -1.071 -0.933 -0.941 -0.951 -0.907 -0.913 -0.920
σ∗
θ -6.224 -5.783 -5.638 -5.992 -5.763 -5.599 -5.643 -5.496 -5.371
σ∗
z -2.815 -0.566 0.366 -1.658 -0.776 -0.112 -1.368 -0.837 -0.372
τ∗rz(×10−17) 1.063 0.381 0.096 0.734 0.431 0.201 0.634 0.444 0.277
u∗
r(×10−4) -1.831 -2.165 -2.347 -3.880 -3.975 -4.065 -4.585 -4.632 -4.682
u∗
z(×10−19) -0.596 -0.994 -1.163 -0.815 -0.969 -1.086 -0.856 -0.948 -1.030

To illustrate the influence of inhomogeneity index
of the perfectly bonded FGPM actuator on the stresses
and displacements of the smart cylindrical shell, the
shell was considered to be subjected to an inner pres-
sure Pi = 5MPa and inner temperature and moisture
concentration rise Ta = 10 and Ma = 0.25. More-
over, we have: V = 200, KL = 0, βo = 0 and H∗ = 0.8
(H = H ∗×0.22×109A/m). Table 3 shows the effect of
the inhomogeneity index on the stresses and displace-
ments for the middle point of the shell. It is observed
that the stresses and displacements of the FGM layer
can decrease or increase by selection of different inho-
mogeneity indexes for actuator. The minus value of �i
leads to decrease in the compressive radial stress as well
as inward radial displacement, while, the effect of pos-
itive value of βi is vice versa. Furthermore, the minus
value of βi leads to rise in the compressive hoop stress
and transverse shear stress, whereas, the positive value
of �i has a reverse effect. It can be seen that the magni-
tude of changes is much greater for thick shells. Con-
sequently, using FGPM actuator with proper inhomo-

geneity index is a way to reduce and control the stresses
and displacements of the hybrid shell. It is worth men-
tioning that the multi-field equations of FGPM layers
are nonlinear function of inhomogeneity index. There-
fore, the multiphysical responses do not change with
a specific trend by altering the inhomogeneity index.
More investigation shows that the effect of inhomo-
geneity index of sensor layer (βo) is not significant.

Effects of the hygrothermal loading on the stresses
and radial displacement of the hybrid shell with dif-
ferent aspect ratio are presented in Fig. 3 and Ta-
ble 4. For simplicity it is assumed that X 1

r = X 2
r =

4X × 10−12, X 1
z = X 2

z = X × 10−11, X 1
T = X 2

T =
4X × 10−3 and X 1

C = X 2
C = X × 10−6 we have βi = 4

and Ma = Ta/40. It is observed from Fig. 3a and 3b
that compressive radial stress and hoop stress of FGM
layer increases by increasing the hygrothermal load-
ing. The magnitude of the enhancement is higher for
thick shell. Furthermore, the difference between hoop
stresses of layers increases by increasing the hygrother-
mal loading. As shown in Fig. 3c, an increase in the
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applied hygrothermal loading increases the inward ra-
dial displacement and this increase is nearer the inner
surface of the shell. The magnitude of the enhance-
ment is higher for thin shell. Fig. 3 implies that the
existence of both humidity and thermal environmen-
tal conditions can extensively affect the stresses and
displacements of a smart cylindrical shell. From Table

4, increase in the compliance coefficient of the imper-
fection results in the reduction of the absolute value
of the hoop stress, as well as radial stress. The ra-
dial displacement of the FGM layer decreases by rising
the compliance coefficient. The decline decreases by
increasing X .

Fig. 3. Effect of hygrothermal loading and aspect ratio of the shell on the distribution of (a) Radial stress, (b)
Hoop stress, (c) Radial displacement.

Table 4
Effect of imperfect bonding and aspect ratio of the shell on the stresses and displacements at the midpoint of the shell.

S = 5 S = 10 S = 15
X = 0 X = 5 X = 10 X = 0 X = 5 X = 10 X = 0 X = 5 X = 10

T=20 -1.605 -1.160 -0.938 -1.329 -1.033 -0.891 -1.258 -0.993 -0.868
σ∗
r T=40 -2.674 -1.836 -1.436 -1.510 -1.510 -1.241 -1.935 -1.414 -1.173

T=60 -3.743 -2.512 -1.934 -2.842 -1.987 -1.591 -2.611 -1.834 -1.478
T=20 -12.758 -8.649 -6.946 -12.148 -9.197 -7.927 -11.370 -9.134 -8.162

σ∗
θ T=40 -26.998 -18.607 -15.062 -19.303 -19.303 -16.726 -23.369 -18.877 -16.915

T=60 -41.238 -28.565 -23.179 -38.346 -29.410 -25.524 -35.368 -28.620 -25.668
T=20 0.136 -0.073 -0.266 -0.271 -0.563 -0.678 -0.730 -0.852 -0.891

σ∗
z T=40 -0.323 -0.536 -0.769 -1.119 -1.119 -1.302 -1.447 -1.656 -1.701

T=60 -0.782 -1.000 -1.272 -0.908 -1.675 -1.925 -2.165 -2.459 -2.512
T=20 0.358 0.055 -0.052 0.390 0.159 0.046 0.516 0.241 0.112

τ∗rz(×10−17) T=40 0.883 0.268 0.046 0.322 0.322 0.111 0.994 0.456 0.209
T=60 1.408 0.481 0.144 1.143 0.485 0.175 1.471 0.671 0.306
T=20 -6.831 -1.463 0.796 -11.385 -3.650 -0.323 -12.929 -4.585 -0.958

u∗
r(×10−4) T=40 -15.798 -4.875 -0.204 -10.468 -10.468 -3.733 -29.423 -12.683 -5.377

T=60 -24.765 -8.288 -1.204 -40.667 -17.286 -7.142 -45.917 -20.780 -9.797
T=20 -2.267 -1.904 -1.732 -2.185 -1.886 -1.759 -2.064 -1.842 -1.749

u∗
z(×10−19) T=40 -4.475 -3.781 -3.461 -3.793 -3.793 -3.548 -4.134 -3.695 -3.514

T=60 -6.683 -5.658 -5.189 -6.579 -5.700 -5.336 -6.204 -5.548 -5.279
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The influences of a magnetic field on the behavior of
a smart FG cylindrical shell is illustrated in Fig. 4. The
shell was subjected to hygrothermo-electro-mechanical
boundary condition as: Pi = 5MPa V = 200, Ta = 10,
kL = 0, βi = 3 and βo = 0. According to Fig. 4a,
increasing the magnetic field leads to increase in the
absolute value of the radial stress. This reduction is
higher near the middle of the thickness of the shell. Fig.
4b depicts that the compressive hoop stress of FGM
layer increases by increasing the magnetic field. Fig.
4c shows that the direction of the radial displacement
can be reversed by applying a magnetic field. The out-
ward radial displacement decreases by increasing the
magnetic field. Higher magnetic field leads to change
in the direction of the radial displacement. This in-
ward radial displacement increases by increasing the
magnetic field. Thus, the radial displacment of the
shell can be minimized by considering a proper mag-
netic field.

It is valuale to explore the effect of magnetic field
more carefully. The magnitude of the Lorentz force
depends on the magnitude of magnetic field. In the
pyroelectric materials there is an interaction between
thermal, electric, and mechanical field. Each one of
these fields can create stresses and displacements in
the pyroelectric cylindrical shell. On the other hand,
by existence of a magnetic field, the radial displace-

ment results in creating the Lorentz force in the radial
direction.

Fig. 5 shows the trend of variations in the stresses
and displacements of middle point of the shell by in-
creasing the applied magnetic field. As seen, the mag-
nitude of variations increases by increasing the mag-
netic field. The radial and hoop stress increase by an
increase in magnetic field. Moreover, the longitudinal
and transverse shear stresses, as well as radial displace-
ment, experience a change in sign by rising the mag-
netic field. Therefore, each of them can be vanished
approximately by applying a proper magnetic field.

The effect of aspect ratio on the influence of mag-
netic field is demonstrated in Table 5. It shows that the
magnitude of changes in stresses resulted by applying
the magnetic field decreases by increasing the aspect
ratio, while, this is vice versa for radial displacement.
It means that applying a magnetic field is more effec-
tive on the stresses of thick shells, as well as radial
displacement of thin shells.

Fig. 6 depicts that existence of imperfect bond-
ing results in reduction of influence of applying a mag-
netic field on the stresses and radial displacement of
the shell. So, the effect of bonding imperfection must
be considered for accurate analysis of the multiphysical
behavior of the hybrid shell.

Fig. 4. Effect of magnetic field on the (a) Radial stress, (b) Hoop stress, (c) Radial displacement.
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Table 5
Effect of magnetic field on the stresses and radial displacement at the midpoint of the shell.

S = 5 S = 10 S = 15
H∗ = 0.2 H∗ = 0.6 H∗ = 1 H∗ = 0.2 H∗ = 0.6 H∗ = 1 H∗ = 0.2 H∗ = 0.6 H∗ = 1

σ∗
r -0.831 -0.970 -1.179 -0.716 -0.853 -1.056 -0.679 -0.819 -1.027
σ∗
θ -1.733 -3.923 -7.613 -2.998 -4.437 -6.980 -3.497 -4.530 -6.377
σ∗
z 2.201 1.167 -0.548 0.306 0.067 -0.310 -0.155 -0.281 -0.470
τ∗rz(×10−17) -0.453 -0.143 0.370 0.099 0.158 0.249 0.250 0.267 0.287
u∗
r(×10−4) 2.440 -0.241 -4.781 2.997 -0.895 -7.856 2.986 -1.224 -8.853
u∗
z(×10−19) -1.274 -1.211 -1.108 -1.004 -1.048 -1.133 -0.951 -0.993 -1.074

Fig. 5. Effect of magnetic field on the (a) Radial stress, (b) Hoop stress, (c) Longitudinal stress, (d) Transverse
shear stress, (e) Radial displacement, (f) Longitudinal displacement of midpoint.
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Fig. 7 depicts the effect of the elastic foundation
on the radial stress and radial displacement of the hy-
brid shell. In this case, we have: (KL = kL × 1011).
Fig. 7 shows in the case wherein the radial displace-
ment is inward; due to the inward radial displacement,
the presence of an elastic foundation helps to resist
the radial displacement. This results in a tensile ra-
dial stress in the outer surface, as well as reduction
in the radial displacement. It can be concluded that

by changing the direction of the radial displacement,
the elastic foundation causes a different effect on the
behavior of the shell. In the case wherein the radial
displacement is outward, unlike the former case, the
existence of an elastic foundation helps to suppress the
radial displacement and results in a compressive radial
stress in the outer surface, as well as a reduction in the
radial displacement. The rate of changes decreases by
increasing kL.

Fig. 6. Effect of magnetic field and imperfect bonding on the distribution of (a) Radial stress, (b) Hoop stress,
(c) Transverse shear stress, (d) Radial displacement.

Fig. 7. Effect of elastic foundation on the distribution of (a) Radial stress, (b) Radial displacement.
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Fig. 8. Distribution of (a) Radial stress, (b) Hoop stress, (c) Longitudinal stress, (d) Transverse shear stress,
(e) Radial displacement for different η.

The influence of the inhomogeneity index of the
FGM layer on the behavior of the smart shell is shown
in Fig. 8. In this case: Pi = 6MPa, βi = βo = −5,
V = 100, Ta = 10, Ma = 0.5, H∗ = 0, KL = 0 and
X=0. The material properties of the inner surface of
the FGM layer remain unchanged while η = η1 = η2 =
η3 = η4 = η5 = η6. Other parameters and conditions
remain unchanged.

Fig. 8a depicts that altering the inhomogeneity in-
dex from a minus value to a positive value results in
an increase in the absolute value of the radial stress.
Fig. 8b and c reveal that by altering the sign of the in-

homogeneity index, the curvature of graphs turns vice
versa. According to Fig. 8c and d, in the exterior sur-
face of FGM, using positive inhomogeneity index leads
to an increase in the longitudinal stress and a decrease
in the transverse shear stress. While a negative inho-
mogeneity index has a reverse effect. Fig. 8e depicts
that changing the inhomogeneity index from a minus
value to a positive value results in a decrease in the ra-
dial displacement of the interior surface of the hybrid
shell, as well as an increase in the radial displacement
of the exterior surface.
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5. Conclusions

The static multiphysical behavior of a functionally
graded hollow cylindrical shell with the inner and the
outer surface imperfectly bonded functionally graded
piezoelectric sensor and actuator subjected to multi-
field loads was numerically analyzed by using a series
type solution and the DQ method. The hybrid shell
was placed in a constant magnetic field and subjected
to hygrothermo-electro-mechanical loads. The mate-
rial properties of each layer were assumed to be graded
in the radial direction according to the power law func-
tion. The following conclusions were obtained:

• The inhomogeneity index of the FGPM actuator
has a considerable effect on its authority. More-
over, the magnitude and even sign of stresses and
displacements in the FGM layer can be controlled
more effectively by using the FGPM actuator and
sensor with a suitable gradient index. The effect
of the inhomogeneity index of the outer FGPM
layer on the temperature and moisture concen-
tration distribution is more distinctive.

• The results imply that the simultaneous existence
of humidity and thermal environmental condi-
tions can severely affect the behavior of a smart
cylindrical shell.

• The actuation authority and sensory potentials
of the FGPM layers are significantly affected by
the presence of bonding imperfections. Increas-
ing the compliance coefficient of the imperfection
shows reduction in the actuation capability of the
actuator as well as the measured sensor voltage.

• In multifield loading, for a certain electro-
magneto-thermo-mechanical conditions, there
exists certain points within the thickness at
which the transverse shear stress is independent
of the hygrothermal condition.

• By increasing the magnetic field, the radial stress
decreases and hoop stress increases. Further-
more, the direction of the radial displacement can
be reversed by increasing the magnetic field.

• The results obtained can be used for design-
ing hybrid FG structures subjected to multi-filed
loadings in multiphysical environmental condi-
tions.
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