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Abstract

Since rotor system of helicopters is responsible for producing lift forces and
thrust, analyzing their vibrations is very essential. This research describes
a method applied for developing a computer program to analyze coupled
vibration of helicopter rotor. Natural frequency and rotor blade mode shapes
were analyzed by MATLAB software. In-plane, out-of-plane coupled and
torsion vibration were also considered in this analysis. First, Myklestad
method, which is one of the most accurate ones to calculate vibration, was
used to find governing equations of rotor vibrations. Based on governing
equation, vibration code was developed by MATLAB software. After that for
validating the program, the obtained results were compared with numerical
results using PATRAN software, with maximum 4.264% error. In these
problems, three beams in different geometric and material conditions with
clamped end were defined. The innovation of this research is developing a
MATLAB code to calculate the coupled natural frequencies and mode shapes
of helicopter blade.

Nomenclature
E Young elasticity modulus EIb Beam-wise bending stiffness of the blade
EIc Chord-wise bending stiffness of the blade F Centrifugal force
FH In-plane force resulting from centrifugal force

crossing through center of mass with horizon-
tal distance from rotation axis

FX In-plane moment resulting from centrifugal
force crossing through center of mass with
horizontal distance from rotation axis

FY Out of plane moment resulting from cen-
trifugal force crossing through center of mass
with vertical distance from rotation axis

Kip

NB

Apparent flexibility rate of in-plane support
system in rotating system
Number of blades

GJ Torsion modulus R Blade radius
I ′ Second mass moment of inertia of parts re-

spect to center of gravity
I Second mass moment of inertia of parts re-

spect to rotation axis
r Distance between center of mass and rota-

tional axis
Icc Chord-wise Mass moment of inertia of the

blade
rc, rb Distance between center of mass and z axis Q In-plane bending moment
L Force perpendicular to z axis M Out of plane bending moment
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MHub,ip Apparent mass of support system for in-
plane direction

Kβ Ratio of blades’ flapping flexibility to number
of blades

MHub,op Apparent mass of support system for out
of plane direction

Kop Apparent flexibility rate of out of plane sup-
port system

Z̄ The length of each part of the blade (with-
out dimension)

S Distance between shear center and rotational
axis

δx Elastic deformation in x direction δy Elastic deformation in y direction
sc, sb Distance between shear center and z axis T Torsion moment
Greek symbols
β

Ω

Bending elastic torsion rotation in vertical
yz plane
Rotor’s angular velocity

θ Geometrical torsion angle between main
structural axis of the blade and horizontal
(xy) plane at the end of one part

w Natural frequency of rotor blade ρ̄ Weight per unit of length for each part
φ Elastic torsion angle in vertical xy plane ψ Elastic torsion rotation in horizontal xz plane

1. Introduction

Vibration analysis of rotating parts is one of the impor-
tant and essential problems in dynamic of structures.
One of the most important vibrational problems in he-
licopters is the vibrations of main rotor blades which
provide lifting and forward forces. If rotor blade vibra-
tions are not controlled using suitable methods, they
can lead to disturbance in helicopter performance, pre-
mature fatigue in various parts and reduced lifetime of
the system, which can even lead to fracture of rotor
blades and possible crashes. Houbolt et al. [1] were de-
rived differential equations for longitudinal and lateral
bending movements and twist along with twist angle.
Bielawa [2] performed a general review of the meth-
ods for calculating vibrations in rotor blades, includ-
ing Myklestad, Galerkin, Riley Ritz and finite element
methods. Wright et al. [3] did a dynamic analysis
of rotating homogenous beams with linear mass and
stiffness distribution using Frobenius series. Surace et
al. [4] investigated the vibrations in beams with initial
twist angles using analytical integral functions. Lin
et al. [5-7], in separate studies, investigated free vi-
brations of nonhomogeneous rotating beams with elas-
tic boundary conditions and concentrated mass along
with effect of depreciation and calculated the Green
function for these beams. Newman et al. [8] inves-
tigated the source of rotor loads which are the main
reasons for vibrations in helicopters. The engineering
department of United States Department of Defense
[9] created C81 general rotor dynamic code for calcu-
lating natural frequencies of helicopter’s blades using
Myklestad method, which is currently used for prelimi-
nary design of the helicopters worldwide. Bramwell [10]
extracted in-plane and out-of-plane differential equa-
tions for helicopter rotor blades and proposed energy
and Myklestad approaches for solving these equations.
Francis et al. [11] studied methods for calculating nat-
ural frequencies and mode shapes for rotating beams.
Skalski [12] investigated the experimental modal anal-
ysis test on helicopter composite blade of the IS-2 he-
licopter. Patron et al. [13] studied a procedure to per-

form operational modal analysis on a reduced-scale, 2m
diameter helicopter rotor. The out-of-plane bending
deformation of the rotor blade is measured using Dig-
ital Image Correlation. Modal parameters including
natural frequencies and mode shapes are determined
from the bending deformation through application of
the Ibrahim Time Domain method. The first three
out-of-plane bending modes were identified at each ro-
tational speed and compared to an analytical finite
element model of the rotor blade. Teter et al. [14]
presented a modal analysis of a rotor with three active
composite blades performed by different methods. The
rotor blades were made of glass-epoxy unidirectional
laminate. The experiments were performed on a test
stand installed at a Structures Dynamics Laboratory at
the Lublin University of Technology. The experimental
natural frequencies and mode shapes of free vibrations
were determined. Finally, a numerical modal analysis
was performed. The simulations were performed by
the finite element method using the Abaqus software
package. The numerical results and the experimen-
tal findings show a very good agreement. Sarker et
al. [15] developed a mathematical model of a realistic
composite helicopter rotor blade, to estimate the char-
acteristics of free and forced bending-torsion coupled
vibration. The natural frequencies and mode shapes of
the blade were evaluated for both the non-rotating and
rotating cases. The validation of the model was car-
ried out by comparing the analytical frequencies with
those obtained by the finite element model. In the for-
mer studied, coupled vibration analysis of rotor blade
using a computer program was not performed.

In order to investigate vibrations, it is necessary to
create a mathematical model for dynamic equations of
rotor blade. Mathematical model for coupled bending
and twist vibrations of rotating blades was extracted
using Myklestad approach by considering nonsymmet-
rical and off-center bending. This approach is faster
than similar methods and can provide more precise
results for vibrational behaviors of rotor blades and
similar systems. The current study analysis of natu-

Modal Numerical Analysis of Helicopter Rotor Sample Using Holzer-Myklestad Method: 111–121 112



ral frequencies and mode shapes of rotor blades using
this mathematical model was implemented in MAT-
LAB software. This implementation is capable of cal-
culating natural frequencies for collective, cyclic, and
scissor modes. Analyses carried out in this study in-
clude the effects of twist, distance between center of
mass and reference axis, and distance between shear
center and reference axis. In-plane moments, out-of-
plane moments, and twist vibrations were also con-
sidered in this analysis. Normalized deformations for
natural frequencies were measured as a function of ro-
tor’s angular velocity which can be the output of this
program. After coding in MATLAB software, in or-
der to evaluate and verify the results, the results were
compared with those of numerical simulation in Patran
software. The results included natural frequencies and
mode shapes of the structure. In order to verify the
vibrational analysis results, three beams were defined
with different material and geometrical characteristics
with a clamped support. Based on the boundary condi-
tions defined for scissor, these conditions can be used as
boundary conditions for clamped support. The novelty
of the current work includes introducing a full coupled
model of rotor blades and expansion of Myklestad ap-
proach for solving these vibrations and implementation
of analysis model in MATLAB software.

2. Problem Definition

Investigating rotor blade rotation is a complex prob-
lem because blades are able to move in various di-
rections. This means that rotor movements can be
modeled using nonlinear homogenous partial differen-
tial equations. However, in order to determine mode
shapes and natural frequencies, it is possible to ignore
these dependencies at the first step. The current study
aims to introduce a technique for analysis of rotations
in a fully coupled rotor and provide a program for this
purpose. Analysis of natural frequencies and mode
shapes of rotor blade was carried out using Myklestad
method in MATLAB environment. This program is
able to perform a precise analysis of helicopter rotor
in the initial design phase without need for complex

modeling. This leads to saving time significantly in
structural design of rotor and blade. Furthermore, ge-
ometry, mass, and stiffness distributions of the rotor
blade are the only information required for this analy-
sis.

2.1. Solution

The schematics of a single rotor blade and its axis are
shown in Fig. 1. The rotor blade is divided into two
parts: hub and blade, both of which are divided into
smaller parts. The analysis method used in this study
considers the blade as a discrete system of separate el-
ements in which each element shows one part of the
blade. Inputs were determined by the user based on
discrete structural characteristics and their values were
average values. The sources of these data were the local
dimensional system of parts or center of mass (inertia
characteristics) or pitch axis (elastic characteristics).
Since twist axis is the analysis’ reference point, all pa-
rameters were transferred onto this axis.

Fig. 1. Blade coordinates system.

In this method, each part of the rotor blade is di-
vided into smaller elements in a way that inertia is
concentrated at the internal end of each part and stiff-
ness is distributed along the element. Using predefine
symbols for deformations, forces, and torques and us-
ing free body diagram with assumption of harmonic
movement and force and momentum equilibrium and
continuous deformations in the entire mass, the follow-
ing recursive equations were introduced [16]:

Φj =
Z̄J

(GJ)j + FjK2
a,j

[
(Fx,j + FjSx,j)βj+1 + (Fy,j − FjSy,j)ψj+1 − (Sx,j)Lj+1 + (Sy,j)Dj+1

+ (FH,jSx,j)Φj+1 − Tj+1

]
+Φj+1 (1)

βj =

[
1 +

Z̄2
jFj

2(EI)yy,j

]
βj+1 +

[
Z̄2
jFj

2(EI)xy,j

]
ψj+1 −

[
Z̄j

(EI)yy,j

]
Mj+1 −

[
Z̄j

(EI)xy,j

]
Qj+1 −

[
Z̄2
j

2(EI)yy,j

]
Lj+1

−
[

Z̄2
j

2(EI)xy,j

]
Dj+1 −

[
Fy,jZ̄j

(EI)xy,j
+

Fx,jZ̄j

(EI)yy,j
−

FH,jZ̄
2
j

2(EI)yy,j

]
Φj+1 (2)
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Ψj =

[
Z̄2
jFj

2(EI)xy,j

]
βi+j +

[
1 +

Z̄2
jFj

2(EI)xx,j

]
Ψj+1 −

[
Z̄j

(EI)xy,j

]
Mj+1 −

[
Z̄j

(EI)xx,j

]
Qj+1

−
[

Z̄2
j

2(EI)xy,j

]
Lj+1 −

[
Z̄2
j

2(EI)xx,j

]
Dj+1 −

[
Fy,jZ̄j

(EI)xx,j
+

Fx,jZ̄j

(EI)xy,j
−

FH,jZ̄
2
j

2(EI)xy,j

]
Φj+1 (3)

δy,j = −
[

FjZ̄
3
j

6(EI)yy,j
+ Z̄j

]
βj+1 −

[
FjZ̄

3
j

6(EI)xy,j

]
ψj+1 + (Sx,j)(ϕj − ϕj+1) +

[
Z̄2
j

2(EI)yy,j

]
Mj+1 +

[
Z̄2
j

2(EI)xy,j

]
Qj+1

+

[
Z̄3
j

6(EI)yy,j

]
Lj+1 +

[
Z̄3
j

6(EI)xy,j

]
Dj+1 +

[
Fy,jZ̄

2
j

2(EI)xy,j
+

Fx,jZ̄
2
j

2(EI)yy,j
−

FH,jZ̄
3
j

6(EI)yy,j

]
Φj+1 + δy,j+1 (4)

δx,j = −
[

FjZ̄
3
j

6(EI)xy,j

]
βj+1 −

[
FjZ̄

3
j

6(EI)xx,j
+ Z̄j

]
ψj+1 + (Sy,j)(ϕj − ϕj+1) +

[
Z̄2
j

2(EI)xy,j

]
Mj+1 +

[
Z̄2
j

2(EI)xx,j

]
Qj+1

+

[
Z̄3
j

6(EI)xy,j

]
Lj+1 +

[
Z̄3
j

6(EI)xx,j

]
Dj+1 +

[
Fy,jZ̄

2
j

2(EI)xx,j
+

Fx,jZ̄
2
j

2(EI)xy,j
−

FH,jZ̄
3
j

6(EI)xy,j

]
Φj+1 + δx,j+1 (5)

Lj = Lj+1 + w2
[
(mrx)jΦj +mjδy,j

]
(6)

Dj = Dj+1 + (w2 +Ω2)
[
(mry)jΦj +mjδx,j

]
(7)

Mj =Mj+1 + (Fj)(δy,j − δy,j+1)−
[
Ω2Zj(mrx)j

]
Φj + (Z̄j)Lj+1 + (w2 +Ω2)(Iyy,jβj + Ixy,jΨj) (8)

Qj = Qj+1 + (Fj)(δx,j − δx,i+1)−
[
Ω2Zj(mry)j

]
Φj + (Z̄j)Dj+1 + w2(Ixy,jβj + Ixx,jψj) (9)

Tj = Tj+1 + (FH,j)(δy,j − δy,j+1) + (w2Izz,j +Ω2TΦΦ,j)Φj +
[
(w2 +Ω2)((mry)j)

]
δX,j + [w2(mrx)j ]δy,j (10)

Fig. 2. (a) Center of gravity, (b) Shear center of the blade.

Calculation process started with assuming unit
value for one of the deformations at the blade’s tip
and zero value for other deformations. All forces and
momentums at the blade’s tip can’t be equal to zero
due to mass concentration. Therefore, for unit value
of out-of-plane slope at the blade’s tip, forces and mo-
mentums were calculated using equations (11) to (13)
as below:

βN+1 = 1 (11)

MN+1 = (Ω2 + w2)Iyy,N+1 (12)

QN+1 = w2Ixy,N+1 (13)

The equations in this study assume that axis of struc-
ture’s main cross-section and its mass axis are parallel
with each other.

A view of the cross-section, its direction compared
to blade axis and locations of shear center, and surface
center are shown in Fig. 2. Three sets of boundary
conditions are considered at the location of rotational
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axis which includes boundary conditions for collective,
cyclic, and scissor modes. In all three modes, blade’s
rotation around z-axis is limited using a control sys-
tem.

In the Myklestad approach, half of mass and mo-
ments of inertia are concentrated at the end of each
part and each part is changed into an elastic structure
with no mass. Deformation, moment and shear forces
of internal end of each part were calculated based on
deformation, moment, and shear forces of the external
end of the same part. All deformations, moments, and
shear forces were calculated in terms of the blade tip
deformation which can ultimately result in deforma-
tion, moment, and shear forces at the origin of coor-
dinates. These calculations were performed using re-
cursive equations. Boundary conditions were also cal-
culated as a function of blade tip deformation which
results in equation 14 (in which � is the vibrational fre-
quency).

[C(w)] ∗


∆ytip
Ψtip

∆xtip
βtip
Φtip

 = {0} (14)

C(w) is a 5×5 matrix (4×4 if twist is eliminated). Nat-

ural frequencies are values of � which satisfy boundary
conditions meaning that at these values, the determi-
nant of C(w) is equal to zero. The values for Vsoft,
Vmass and Hmass are calculated using the following
equations.

Vsoft =
20 ∗ 106

R ∗ kop
(15)

Vmass =
MHub,op

NB
(16)

Hsoft =
20 ∗ 106

R ∗ kip
(17)

Vmass =
MHub,ip

NB
(18)

Twist conditions for all modes are shown as
Φ(PHOFF)=T(PHOFF)

CK
in which CK is equal to twist

stiffness of control system. For the analysis, three main
sets of boundary condition equations were used and
modal results were determined in one of the collective,
cyclic and scissor conditions [17]. The boundary condi-
tions for each mode are shown in Table 1. Additionally,
spring and mass terms are shown in Fig. 3.

Fig. 3. Boundary conditions of the hub for (a) Collective out of plane, (b) Collective in-plane, (c) Cyclic out
of plane, (d) Cyclic in-plane, (e) Scissors out of plane, (f) Scissors in-plane, (g) Torsion condition.
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Table 1
Boundary condition equations.

Collective mode Cyclic mode Scissor’s mode (with-
out hinge offset)

Scissor’s mode
(with hinge offset)

L− (Kop −Mopw
2)δy = 0 δy = 0 δy = 0 δy = 0

δx = 0 D − (Kip −Mipw
2)δx = 0 δx = 0 δx = 0

β = 0 M −Kββ = 0 β = 0 M −Kββ = 0
Q−KTΨ = 0 Ψ = 0 Ψ = 0 Q−KTΨ = 0
T −KCΦ = 0 T −KCΦ = 0 T −KCΦ = 0 T −KCΦ = 0

Φ = 0

Collective mode is determined by vertical (out-of-
plane) and horizontal (in-plane) displacement of oppos-
ing rotor blades. Suitable boundary conditions for in-
plane mode are 2nd and fourth elements from first col-
umn of Table 1, which are pin connection with spring
coefficient of KT. First and third elements are condi-
tions for clamped connection with a moving hub, which
is modeled using a spring-mass system with one degree
of freedom. These conditions belong to out-of-plane
collective mode. First four conditions of the first col-
umn in Table 1 are applied in the central line location.
Kc term shows free flexibility rate of the control sys-
tem.

Cyclic mode includes in-plane symmetrical and out-
of-plane asymmetrical modes around the rotational
center. Boundary conditions for cyclic mode are shown
in second column of Table 1. The first and third ele-
ments of this column show pin conditions with flapping
flexibility limit (Kβ) at the out-of-plane direction. Ele-
ments 2 and 4 are for in-plane conditions, which show a
stationary connection with a flexible hub (stiffness and
mass characteristics of the hub are described usingMip

and Kip, respectively). Twist boundary conditions are
similar for collective and cyclic modes.

For scissor mode, in-plane and out-of-plane bound-
ary conditions at the central line show stationary con-
nection of blades with an unmoving hub (δy,1 = δx,1 =
β1, ψ1 = 0). For rotors with three or more blades, twist
conditions are similar to collective and cyclic modes.
For two-blade rotors, at the radial location of pitch
horn connection, twist deformation is zero. These con-
ditions are presented in the third column of Table 1.
For in-plane and out-of-plane directions, wherever the
offset of flapping and lagging hinges is desirable (such
as in pin rotors), the alternative forms shown in col-
umn 4 of Table 1 are used. If the offset of flap hinge is
not zero, zero slope condition is replaced by an equa-
tion which relates torque and slope at the hinge’s lo-
cation using flapping flexibility term (Kβ). Similarly,
for lag hinge offset, slope conditions for pin connection
are replaced with flexibility limit KΨ at the lag hinge’s
location.

The calculated values of deformation, slope, mo-
ment, and shear force at each part can be substituted
at the left side of the boundary condition equation for
each mode by satisfying relevant boundary conditions
for each mode and relative to coordination with unit

being at the external edge of blade’s tip. By doing
this, the equations can be used to create one column
of boundary condition coefficient matrix. By repeating
the substitution of relevant conditions with unite value
of another dimension of the blade, the matrix is filled
[18]. The terms can be derived using partial derivative
of any boundary condition equations relative to specific
deformation of blade tip.

Substituting calculated natural frequencies in the
boundary condition matrix leads to five homogenous
equations based on five unknown deformations at the
end point of the blade tip. Inverse iteration approach
was used to solve the blade’s tips relative deformations
[19]. The inverse of coefficient matrix was multiplied
with the initial guess vector. The resulting vector was
used as the new guess and was again multiplied by
the inverse of coefficient matrix. This was repeated
four times with resulting vector being normalized us-
ing the largest element. The final vector indicated the
unit deformation of blade tip for that mode. Using
these values and distribution of deformations, slopes,
shear forces, and moments related to unit deformation
of blade tip, it is possible to calculate mode shapes,
shear force and moment distributions. Shear forces
and moments were solved again at the local coordi-
nation system of each part using twist and collective
pitch angle.

To calculate mode shapes, it was assumed that
∆y = 1; subsequently 4 boundary condition equations
were soleved (eliminating twist leads to 3 equations)
in order to determine deformation at the blade’s tip.
Since all deformations, moments, and forces were func-
tions of deformation, it was possible to calculate mode
shapes. Then, mode shapes were normalized relative
to largest linear deformation value or a 10-degree twist.
Finally, all mode shapes were drawn at different direc-
tions.

3. Implementation in MATLAB Soft-
ware

Using the abovementioned method, an application pro-
gram was coded in MATLAB environment for extract-
ing natural frequencies of rotor blade and drawing
mode shapes.

In this program, torsion was also assigned the value
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of 1 and was included in calculations (this value can-
not be changed by the user). The user can enter the
necessary parameters about static and dynamic char-
acteristics of rotor. In the next stage, the number of
nodes in hub was calculated. Then, the angular veloc-
ity of the rotor which was entered in rounds per minute
was converted to Radian per second and its square was
calculated. In the next stage, rotor collective pitch an-
gle was calculated and used for later calculations. N is
the number of elements and N1 shows the number of
nodes. Next, pitch angle of each node was calculated
by multiplying the size of each element by torsion rate
and was then converted from degrees to Radian. Then
Rotor collective pitch angle was converted to Radian
and angular velocity was also converted to radian per
second. In the next step, mass inertia of flap and mass
of the end of the blade was calculated. After calcu-
lating half of element mass before and after the node,
product of mass with center of mass distance and shear
center and inertia of mass moment were calculated in
the longitudinal and transverse directions. In order to
create the coefficient matrix, each time, one of the β,
x, y, Ψ and Φ values was set to 1 with the rest equal
to zero (which is one of the theoretical necessities for
Myklestad approach). In the next step, the average
angle of two elements was calculated, and was added
to the root collective angle and then was calculated at
the end of the blade in the direction perpendicular to
x and y axis for unit force.

Centrifugal forces and moments related to distance
from center of gravity were calculated in the reference
coordination system. It is worth mentioning that these
forces and moments were calculated from blade’s tip
toward its base.

The next step was calculating non-zero terms at the
blade’s tip. Then, boundary conditions were used to
create the boundary condition matrix. At the first line,
one of the elements of coefficient matrix was defined as
a symbolic value, so MATLAB can define the matrix
as a symbolic matrix. After that, coefficient matrix for
collective boundary conditions was calculated based on
frequency variable. At the end of the program, the
natural frequencies of the rotor blade were stored in
another matrix in terms of Hz and sorted in ascending
order. After calculating the natural frequencies, it is
necessary to draw mode shapes of the rotor blade at
these calculated frequencies. As a result, the program
was used to draw torsion, vertical, and horizontal mode
shapes for collective, cyclic, and scissor boundary con-
ditions.

4. Validation of Results Using Finite El-
ement Method

After preparation of vibration code in MATLAB envi-
ronment, it is required to validate the output results

of the program. To this end, numerical simulation and
vibrational analysis of a beam with different material
and geometrical conditions by clamp support was car-
ried out as three problems in Patran software. The
results include natural frequencies and mode shapes of
the structure. Based on the boundary conditions for
scissor condition, the boundary condition was consid-
ered to be similar to those for clamped support condi-
tions (Fig. 1).

4.1. Problem Definition

In the first problem, an aluminum beam with length
of 1 meter and circular cross-section was considered as
seen in Fig. 4. This beam was divided into 20 parts
for vibrational analysis problem.

Fig. 4. Schematic of the first problem.

By assuming ρ = 2700 kg⁄m3 for aluminum and
the problem’s geometry, the mass of beam and each
element was calculated as 0.8478 and 0.04239 kg, re-
spectively. Due to the asymmetrical cross-section of
the beam, we have:

rb = rb = Sb = Sc = 0

Second moment of area and polar moment of inertia
were also calculated as 0.785 × 10−8m4 and 1.57 ×
10−8m4 respectively.

By considering ν = 0.33, E = 70GPa and G =
E

2(1 + ν)
= 26.31GPa for aluminum, bending and tor-

sion stiffness of the beam were calculated using the
following equation:

EI = 70× 109 × 0.785× 10−8 = 549.5N.m2

GJ = 26.31× 109 × 1.57× 10−8 = 413.07N.m2

Second mass moment of inertia for each part was cal-
culated along beam-wise and chord-wise length of the
blade using the following equation:

Ibb = Icc =
1

12
ml2 =

1

12
0.04239× 0.052

= 0.883125× 10−5kg.m2

In the second problem, in order to validate the accu-
racy of the code for a rotating beam, the aluminum
beam from the previous problem with similar proper-
ties rotated with angular velocity of 1000rpm. This
beam is shown in Fig. 5.
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Fig. 5. Schematic of the second problem.
In order to validate the accuracy of the code for

a rotating beam with variable mass and geometrical
properties along its length, the next problem investi-
gated a rotating beam with variable mass and geomet-
rical properties.

In the third problem, an aluminum beam with
length of 61cm with variable cross-section was consid-
ered, rotating with the angular velocity of 1000 rpm.
In order to analyze the vibrations, the beam is divided

into 22 parts. The schematic of this beam was shown
in Fig. 6.

Fig. 6. Schematic of the third problem’s beam.

4.2. Solution with MATLAB Software

After calculating geometrical and mass characteristics,
vibrational analysis of these beams was carried out us-
ing the code created in the previous section. The inputs
of vibration code of the problem are shown in Table 2.

Table 2
Program input of first problem beam to third problem beam.
Third problem input Second problem input First problem input Input variable
0 0 0 KT (KT)
0 0 0 Mop (MOP )
0 0 0 M (Mip)
0 0 0 KOP(Kop)
0 0 0 KIP (Kip)
0 0 0 KBETA (Kβ)
0 0 0 KPSI (KΨ)
0 0 0 KC (KC)
0 0 0 JHUB
0 0 0 Twist (θt)
0 0 0 Blades
0 0 0 CHOFF
0 0 0 FHOFF
0 0 0 PHOFF
1000 1000 0 RRPM
0 0 0 RCOLL (θC)
[0 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23
23.5 24]

[0 0.05 0.1 0.15 0.2 0.25 0.3
0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.7 0.75 0.8 0.85 0.9 0.95 1]

[0 0.05 0.1 0.15 0.2 0.25 0.3
0.35 0.4 0.45 0.5 0.55 0.6
0.65 0.7 0.75 0.8 0.85 0.9
0.95 1]

Z

1e4∗[10e15 1e2 80 18 14 11
9.2 7.2 6.3 5.3 4.2 3.7 3.2 2.95
2.7 2.65 2.6 2.55 2.5 2.45 2.4
2.4]

[549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5]

[549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5]

EIB (EIb)

1e6*[10e13 300 100 51 47.9
46.8 45.8 45.1 44.4 44.1 43.8
43.8 43.8 44.1 44.4 45.8 47.2
49.3 51.4 53.7 54.9 56]

[549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5 549.5
549.5]

[549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5
549.5 549.5 549.5 549.5]

EIC (EIc)

[0.5 0.3993 0.31 0.2761 0.26
0.2437 0.2408 0.2379 0.2294
0.2209 0.2166 0.2123 0.2081
0.2039 0.2018 0.1997 0.1955
0.1912 0.1912 0.1912 0.1912
0.1912 0]

20∗g∗[0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239 0]

20∗g∗[0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239
0.04239 0.04239 0.04239 0]

WTPL (w, W)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

THD (θ)
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Third problem input Second problem input First problem input Input variable
1e-2∗[0.25∗266.7 3.327 2.583
2.301 2.167 2.031 2.007
1.983 1.912 1.841 1.805 1.769
1.734 1.699 1.682 1.664 1.629
1.593 1.593 1.593 2*0.1992
2*0.1991]/g

0.883125e-5∗20∗[1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1]

0.883125e-5∗20∗[1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1]

EYBC (ICC)

1e6∗[10e12 1 0.7 0.575 0.48
0.42 0.382 0.348 0.32 0.295
0.275 0.261 0.251 0.241 0.23
0.214 0.196 0.173 0.153 0.125
0.1 0.078]

413.07∗[1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1]

413.07∗[1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1]

GJ

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

SB (Sb)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

SC (SC)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

RB (rb)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0]

RC (rC)

4.3. Solution Using Patran Software

Based on the determined characteristics, these beams
were also modeled and analyzed in Patran software.
The results of numerical simulation and vibration code
in Lag and Lead directions for these three problems are
shown in Tables 3, 4 and 5, respectively.

After calculating the natural frequencies of the
beams, it is necessary to draw the mode shape of the
frequencies at Lag and Lead directions for numerical
simulation and vibration code; subsequently, compar-
ing the results is essential.

Based on the results, for the first problem, Fifth
mode shape of the beam at lag and lead direction for
numerical simulation and vibration code is shown in
Figs. 7 and 8, respectively. For the second problem,
Fourth mode shape of the beam at the lag direction
for numerical simulation and vibration code is shown
in Figs. 9 and 10, respectively. For the third problem,
Fourth mode shape of the beam at the lag direction
for numerical simulation and vibration code is shown
in Figs. 11 and 12, respectively.

Fig. 7. Fifth horizontal mode shape of first problem
beam resulting from numerical simulation.

5. Results

After calculating geometrical and mass characteristics
of the beam, vibrational analysis was carried out us-
ing the code introduced in the previous section. Then
the results were compared to the results of numerical
simulation.

For the first problem, as seen in Table 3, the re-
sults of vibration code have a good compatibility with
the results of numerical simulation. This compatibility
shows that the code is useable for a beam with constant
cross-section and without angular velocity.

Based on Figs. 7 and 8, the lag and lead mode
shapes are exactly alike with mode shapes acquired
from numerical simulation and vibration code for both
directions, which are also compatible with each other.

Fig. 8. Fifth horizontal mode shape of first beam re-
sulting from modal analysis.

Fig. 9. Fourth vertical mode shape of second problem
beam resulting from numerical simulation.

In the second problem, based on the results pre-
sented in Table 4, the results of vibration code have
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good compatibility with numerical simulation. How-
ever, there is significant error at mode number 1 in the
lag condition. Since other errors are close to 4%, this
data point can be considered an outline result. The rest
of the compatible results indicate that the code is ap-
plicable for rotating beam with constant cross-section.

According to Figs. 9 and 10, Lag mode shapes are
exactly similar to mode shapes calculated from numer-
ical simulation and vibration code, which are compat-
ible with each other.

Fig. 10. Fourth vertical mode shape of second prob-
lem beam resulting from modal analysis.

Fig. 11. Third vertical mode shape of third beam
problem resulting from numerical simulation

Fig. 12. Third vertical mode shape of third beam
problem resulting from modal analysis.

Table 3
Natural frequency resulting from numerical simulation and modal analysis for first beam.

Error percentage Patran wn(Hz) MATLAB wn(Hz) ModeHorizontal Vertical Horizontal Vertical Horizontal Vertical
0 0 14.228 14.228 14.223 14.223 1
0.4 0.4 88.824 88.824 88.381 88.381 2
1.2 1.2 247.67 247.67 244.631 244.631 3
2.24 2.24 482.88 482.88 472.063 472.063 4
3.47 1.8 793.55 780.32 765.97 765.97 5

Table 4
Natural frequency resulting from numerical simulation and modal analysis for second problem beam.

Error percentage Patran wn(Hz) MATLAB wn(Hz) ModeHorizontal Vertical Horizontal Vertical Horizontal Vertical
0.4 31.26 23.089 23.089 22.998 15.87 1
2.62 1.2 99.163 99.163 96.563 97.954 2
2.23 2.03 259.68 259.68 253.881 254.394 3
3.04 3.09 497.45 497.45 482.03 482.04 4
4.26 4.28 811.2 811.2 776.57 776.42 5

Table 5
Natural frequency resulting from numerical simulation and modal analysis for third problem beam.

Error percentage Patran wn(Hz) MATLAB wn(Hz) ModeHorizontal Vertical Horizontal Vertical Horizontal Vertical
0.12 0.12 487.93 31.24 487.33 31.20 1
- 0.65 - 112.49 - 111.757 2
- 1.67 - 276.66 - 272.02 3
- 2.83 - 515.49 - 500.87 4
- 4.37 - 828.43 - 792.16 5
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For the third problem, based on the results pre-
sented in Table 5, the results acquired from vibration
code have good compatibility with the results of nu-
merical simulation. This compatibility shows that the
code is applicable for a rotating beam with variable
cross-section.

6. Conclusions

This application can be used to estimate natural fre-
quencies and mode shapes of helicopter rotor blades.
This application is based on Holzer – Myklestad ap-
proach on a rotating beam which represents rotor
blades with a series of concentrated masses connected
together using stiffness elements. Elasticity and cou-
pled inertia between horizontal, vertical, and twist cur-
vature were considered in the analysis. The set of
structural stiffness, mass, blade torsion, torsion iner-
tia and distance from center of mass and distance be-
tween shear center and twist axis can be used as limits
of this problem. These limits are usually used to show
different hubs on mode shapes. The precision of results
was shown by comparing the results to numerical ones.
The calculated bending frequency has good compati-
bly with the measured results with 4.26% error. The
presented program can be used to achieve the blade’s
natural frequencies in coupled loading condition. The
other codes can only calculate the natural frequencies
for one case on loading like bending moment. So this
unique program can be used to measure the coupled
natural frequencies for different kinds of rotor blades
with different boundary conditions.
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