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Abstract

The purpose of this paper is to develop a design procedure for Langevin
ultrasonic transducers with lateral dimensions larger than a quarter of the
longitudinal wave length. In this case, the assumption of the one-dimensional
design is not valid, and this method cannot predict the experimental resonance
frequency. Some researchers have considered radial and longitudinal normal
stresses by means of the apparent elasticity method and reduced the error
between the design and experimental resonance frequency. In this research,
3D normal stresses of a transducer’s components i.e. longitudinal, radial and
circumferential were considered in the design procedure. The apparent elastic-
ity method was used to modify the elastic modulus and the wave numbers of
the transducer‘s components. Resonance lengths of the components were then
calculated using the modified values. The design resonance frequency of the
transducer was 20kHz. The experimental resonance frequency was measured
as 19810Hz. The error of 0.95% between analytical and experimental results
showed that the new design procedure can fairly estimate the resonance
frequency of the transducer.

Nomenclature

Ai Cross section area of the ith part of the
transducer

Fi Boundary force of the ith part of the tras-
ducer

A,B,C,D
E,F,G

Longitudenal vibration amplitude coefi-
cients

Ei Apparent young modulus of the ith part
of the transducer (in z direction)

H, I, J,M
N,O,Q

cEij Elasticity tensor of the piezoelectric at
the constant electric field

C1, C2 Radial vibration amplitude coeficients b Inner radious of a hollow cylinder
Tr, Tz, Tθ Normal stresses in the piezoelectric t Time
J(x), y(x) Functions to simplify equations a Outer radius of a hollow cylinder
J1, Y1, J0, Y0 Bessel functions eij Piezoelectric stress tensor
ki Apparent longitudinal wave number of

the ith part of the transducer
SE
ij Compliance tensor of the piezoelectric the

at constant electric field
Ez Apparent young modulus in z direction Er Apparent young modulus in r direction
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E Real young modulus σθ Normal circumferential stress
Sθ Circumferential strain kz Apparent wave number along z direction
kr Apparent wave number along radial direction li Length of the ith part of the transducer
ni Mechanical coupling coefficient of the ith part

of the transducer
zi Local z coordinate of the ith part of the

transducer
Sz Longitudinal strain Sr Radial strain
ur Radial displacement uz Longitudinal displacement
ui Longitudinal displacement of the ith part of

the transducer
εTij Relative permittivity tensor of the piezoelec-

tric
r r Coordinate Vr Apparent sound velocity along r direction
w Angular frequency ν Poison ratio
ρ Density Vz Apparent sound velocity along z direction
σz Normal longitudinal stress σr Normal radial stress

1. Introduction

The purpose of this research is to develop a design pro-
cedure for Langevin ultrasonic transducers with lateral
dimensions larger than a quarter of the longitudinal
wave length. Bolt-clamped Langevin transducers are
widely used in various applications such as cleaning,
plastic and metal welding, machining processes, metal
forming, polymers production processes, wastewater
treatment, under-water communication and other in-
dustrial applications [1-6]. Widespread use of this kind
of transducers reflects the necessity of an analytical
method to design these transducers. These transduc-
ers consist of some piezoelectric rings which are sand-
wiched by two metal parts. Typucally, the backing
part is a stainless steel hollow cylinder; the match-
ing part is aluminum or titanium solid cylinder with
a threated hole. A screw bolt is used to clamp all the
parts. In conventional design methods, transducers are
assumed to vibrate longitudinally, and lateral vibra-
tions are neglected [7]. Generally speaking, when the
lateral dimensions are less than a quarter of the lon-
gitudinal wavelength, one-dimensional design method
can be used and the error between the measured and
designed frequency is not significant. In the case of
transducers which have lateral dimensions larger than
a quarter of wave length, the transducer has a cou-
pled vibration consisting of longitudinal and lateral vi-
brations. Therefore, a new design theory is needed to
study the vibrational behavior of the transducers. To
study the coupled vibrations of ultrasonic transducers,
FEM methods are usually used [8-9]. But analytical
methods are preferred because of the deep insight they
provide about physical parameters of the system. Mori
et al introduced the apparent elasticity method [10] and
used it to study high power ultrasonic radiators of thick
plates and short column [11-12]. Based on the method
presented by Mori, the coupled vibrations of piezoelec-
tric, radiators, and transducers have been studied in
some researches. Shuyu applied the method for design-
ing an ultrasonic transducer which consisted of metal

end parts with rectangular cross-section and two piezo-
electric rings [13]. Due to excitation of complex modes,
rectangular cross-section parts for head and tail mass
are not common for ultrasonic transducers. Therefore,
frequency equations of this research are not applicable
for circular cross-section transducers. In addition, in
this paper radial and circumferential normal stresses
of piezoelectric elements are assumed equal. And also
the effect of the central bolt is neglected. Dragan, Mi-
lan, Liang and Zhou applied the apparent elasticity
method to design transducers [14-15]. In these two
researches, the mechanical coupling coefficient was de-
fined as the ratio of the longitudinal stress to the radial
stress. It was also assumed that the radial stress was
equal to the circumferential stress. Shuyu studied cou-
pled vibrations of a piezoelectric disk resonator, and a
metal hollow cylinder separately using apparent elas-
ticity method [16-17].

In this paper, a design procedure of ultrasonic
transducers is developed based on apparent elasticity
method. The procedure considers 3D normal stresses
of transducers’ components. Mechanical coupling coef-
ficient was defined as the ratio of longitudinal normal
stress to lateral normal stresses i.e. radial and circum-
ferential normal stresses. The procedure was applied
to design a commercial ultrasonic transducer. Me-
chanical coupling coefficient of each part was achieved
at the design resonance frequency. Then the elastic
modulus and wave numbers of the components were
modified. After that, using the longitudinal frequency
equation of the transducer, the resonance lengths of
the transducer’s components were calculated. The de-
signed transducers with the one-dimensional and the
new method were simulated using ANSYS software
and their resonance frequencies were compared with
the analytical one. Ultimately, the transducer which
designed with the new method was manufactured and
the experimental resonance frequency is compared with
the analytical counterpart. The results showed that
the new method can fairly predict the experimental
resonance frequency.
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2. Design Procedure

Some parameters should be determined as input val-
ues of the design procedure. These parameters are res-
onance frequency, nominal power, mode shape, node
position, and material physical properties of compo-
nents. The resonance frequency of ultrasonic trans-
ducers should be chosen above 20kHz to be out of the
human audible frequency range. The higher the res-
onance frequency is, the lower the wave length will
be. The length of the transducer should be half of
the wavelength to generate the resonant standing wave.
In this research, the design resonance frequency was
20kHz. The intended output power is the key factor
for selection of the number, size and type of piezoelec-
tric rings required. The nominal power of the trans-
ducer was chosen as 300W. The maximum allowable
power delivered by each piece of piezoelectric ring de-
pends on the quality, treatment, production processes
and its dimensions. This power is commonly said to
range from 15 to 30W/cm2 [7]. Piezoelectric rings are
available in standard sizes in markets. Therefore, two
piezoelectric ceramic ring of the type PZT4 (Lead Zir-
conate Titanate) were used. The power per area and
the size of the piezoelectric rings are stated in Table 1.
Further, mode shape and nodes position of the trans-
ducer should be determined in the design procedure.
First longitudinal mode shape of the transducer was
chosen, because the stiffness of the first mode is lower
than that of the next modes and its excitation is eas-
ier. The first longitudinal mode has one node. As
the matching part has more strength than the piezo-
electric ceramics, this is the best place to locate the
node. The flange area of the matching is an appro-
priate place to clamp the transducers to housings or
other equipment. To achieve maximum transmission
of ultrasound between the piezoelectric and medium,
the matching part is usually made up of aluminum or
titanium [7]. Heat conduction and machinability of
the aluminum are more than those of titanium, but
mechanical and corrosion strength of titanium is more
than aluminum’s. The backing is recommended to be
made up of steel to reduce vibrations at the end of the
transducer. Stainless steel 303 or 304 are suggested for
backing, and aluminum 7075-T6 for matching materi-
als with regard to acoustic properties and acceptable
performance in practice. Based on what has already
been discussed, the specifications and material physi-
cal properties of the transducer are expressed in Tables
1 and 2.

2.1. Assumptions of the Design Procedure

• Lateral dimensions of the transducer are not nec-
essary to be less than a quarter of the sound wave
length.

• Lateral vibrations toward radial and circumfer-
ential direction are not negligible.

• Lateral stresses along radial and circumferential
direction are not necessarily equal.

• Longitudinal and lateral vibrations are sinu-
soidal.

• Diameter variation along the transducer is far
enough from critical value. Meanwhile, the in-
fluence of fillet and chamfers in the corners is
ignored.

• Acoustic impedance of air is considered to be
zero; so that a transducer that operates in air
is called unloaded transducer.

• Copper electrodes are considered to be of the
same material as piezoelectric rings.

• Two piezoelectric rings and two copper electrodes
are considered as one integrated part.

• Flat surfaces on the backing and matching which
are machined to ease the assembly are ignored.

Fig. 1 demonstrates the mode shape, node posi-
tion, main components, and the boundary conditions
of the transducer.
Table 1
Specifications of the transducer.

Parameter Value
Design resonance frequency 20000Hz
Vibration mode First longitudinal mode
Position of node On the matching step
Matching material Aluminum 7075-T6
Backing material Stainless steel 304

Piezoelectric dimensions External diameter 50mm
Internal diameter 20mm
Thickness 6mm

Number of piezoelectric 2 rings
Thickness of copper elec-
trodes

0.5mm

Piezoelectric type PZT4
Power per unit area of the
piezoelectric 18W/cm2

Nominal power of the trans-
ducer 300W

Table 2
Physical properties of the transducer’s components.

Material Poisson ratio Real elasticity module(GPa) Density
Aluminum 7075-T6 0.33 73 2823
Stainless steel 304 0.28 200.57 7917
Piezoelectric PZT4 0.3 115.41 (in “33” direction) 7500
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Fig. 1. Mode shape, node position, main components and boundary conditions of the transducer.

Differential equations of longitudinal vibrations of
the transducer’s components are the same as Eq.
(A13). Analytical solution of the equation for each
component is as follows:

u1(z1) = A cos k1z1 +B sin k1z1 (1)

u2(z2) = C cos k2z2 +D sin k2z2 (2)

u3(z3) = E cos k3z3 + F sin k3z3 (3)

u4(z4) = G cos k4z4 +H sin k4z4 (4)

u5(z5) = I cos k5z5 + J sin k5z5 (5)

u6(z6) = M cos k6z6 +N sin k6z6 (6)

u7(z7) = P cos k7z7 +Q sin k7z7 (7)

where, A, B, C, D, E, F, G, H, I, J, M, N, P, and Q
are constants which can be obtained by the boundary
conditions of Fig. 1.

B = E = 0 (8)

C = P = A cos k1l1 (9)

Q = −A
cos k1l1 cos k7l2

sin k7l2
(10)

D = A

(
−A1E1k1 sin k1l1

A2E2k2
+

A7E7k7 cos k1l1 cos k7l2
A2E2k2

)
(11)

F = −C
A2E2k2 sin k2l2

A3E3k3
+D

A2E2k2 cos k2l2
A3E3k3

(12)

G = F sin k3l3 (13)

H = F
A3E3k3 cos k3l3

A4E4k4
(14)

I = G cos k4l4 +H sin k4l4 (15)

J = −G
A4E4k4 sin k4l4

A5E5k5
+H

A4E4k4 cos k4l4
A5E5k5

(16)

M = I cos k5l5 + J sin k5l5 (17)

N = −I
A5E5k5 sin k5l5

A6E6k6
+ J

A5E5k5 cos k5l5
A6E6k6

− P
A7E7k7 sin k7(l2 + l3 + l4 + l5)

A6E6k6

+Q
A7E7k7 cos k7(l2 + l3 + l4 + l5)

A6E6k6
(18)

An Analytical Approach to Design of Ultrasonic Transducers Considering lateral vibrations: 47–58 50



The frequency equations of the longitudinal vibrations
of the transducer are as follows:

C cos k2l2 +D sin k2l2 = 0 (19)

−M cos k6l6 +N sin k6l6 = 0 (20)

where ui, zi, ki, Ai, and Ei are longitudinal displace-
ment, longitudinal coordinate, apparent longitudinal
wave number, cross-section area, and apparent longi-
tudinal elastic modulus of the ith part, respectively.
The design procedure of the transducer consists of the
following steps:
Step 1: Using radial frequency equations of the trans-
ducer’s parts, the mechanical coupling coefficient of
each part is calculated at the design resonance fre-
quency, with known lateral dimensions and physical
properties.
Step 2: the Elastic modulus and wave number of each
part are modified using its mechanical coupling coeffi-
cient.
Step 3: Using the modified values as well as the trans-
ducer longitudinal frequency Eqs. (19) and (20), it is
possible to calculate the components resonance lengths.

Since the boundary conditions of the transducer ra-
dial vibrations are the same as those of a free cylinder,
it is possible to use radial frequency equations of a
free cylinder for the transducer. According to Fig.1,
the first and seventh parts of the transducer are solid
cylinders. Therefore, the radial frequency equation of
a solid cylinder (Eq. (A24)) was used to calculate the
mechanical coupling coefficients. The apparent radial
wave number in this equation is as follows:

kr =
w√

E(2− νn)

ρ(1 + ν)(1− ν − 2νn)

(21)

where w, n, ν and are angular frequency, mechani-
cal coupling coefficient, Poisson’s ratio, and real elastic
modulus of each part of the transducer. The apparent

radial wave number at the frequency of 20kHz is substi-
tuted in the Eq. (A24). In this equation, dimensions,
physical properties and the resonance frequency were
known. Therefore, the mechanical coupling coefficient
was calculated numerically using Maple software. The
calculated values were used to obtain the apparent lon-
gitudinal wave number and apparent elastic modulus
of the two parts using Eqs. (A10 and A12).

Parts 2, 3, 5, and 6 in Fig. 1 are hollow cylin-
ders. Therefore, radial frequency equation of a free
hollow cylinder, Eq. (A23), was used to calculate the
mechanical coupling coefficient of these parts the same
as what discussed for the parts 1 and 7. The radial
frequency equation of a piezoelectric ring, Eq. (A39),
was used to calculate the mechanical coupling coeffi-
cient of the piezoelectric. Finally, Eqs. (A41 and A42)
were used to calculate the apparent longitudinal wave
number and elastic modulus of the piezoelectric. Ta-
ble 3 shows the mechanical coupling coefficients, real
and apparent elastic modulus and wave number of each
part of the transducer.

Two frequency Eqs. of (19) and (20) were used
to calculate the resonance lengths of the transducer.
Some lengths should be determined first. l4 = 2lpiezo+
2lelectrod = 13mm was the length of the piezoelectric
rings which consisted of the thickness of two piezoelec-
tric rings and two copper electrodes. l6 was selected
as 8mm to embed the head of the bolt in the backing
part. Using frequency Eq. (19) and determining one
the lengths of l2 or l1, it is possible to calculate the
other length. Furthermore, Using frequency Eq. (20)
and determining one of the lengths of l3 or l5, it is possi-
ble to calculate the other length. It must be taken into
account that the total length of the transducer is near
the mean half wavelengths of the components. In the
procedure, l2 and l3 were selected as 15mm and 8mm
respectively. l1 and l5 were calculated using the lon-
gitudinal frequency equations. Table 4 compares the
resonance lengths of the transducer which were calcu-
lated by the one-dimensional and the apparent elastic-
ity method.

Table 3
The mechanical coupling coefficient, elastic modulus and wave number of each section of the transducer.

i E (Gpa) k (rad/m) ni Ei(GPa) ki (rad/m)
Part
number

Real elastic
modulus

Real wave
number

Mechanical coupling
coefficient

Apparent elastic
modulus

Apparent wave
number

1 73 24.71 -23.17 71.97 24.88
2 73 24.71 -37.4 72.36 24.82
3 73 24.71 -19.26 71.77 24.92
4 115.41 32.03 -2.64 57.1 45.54
5 200.57 24.96 -20.1 197.81 25.13
6 200.57 24.96 -15.8 197.07 25.18
7 200 24.81 -320.1 199.82 24.82
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Table 4
Dimensions of the transducer designed by the one-dimensional and apparent elasticity methods.

ith part
number

External radius
(mm)

Internal radius
(mm)

Length (mm) One-dimensional
method

Apparent elastic-
ity method

1 20 0 l1 50.5 50
2 20 6 l2 15 15
3 25 6 l3 8 8
4 25 10 l4 13 13
5 25 6.5 l5 21.1 12.7
6 25 11 l6 8 8
7 6 0 l7 = l2 + l3 + l4 + l5 57.1 48.7

3. FEM Analysis of the Transducer
Finite element modal analysis of the transducer was
performed using ANSYS software. SOLID 186 ele-
ments were used to mesh the matching, backing and
the bolt, and SOLID 227 was used for the piezoelectric
rings. Compliance tensor at the constant electric field
[sEij ], elasticity tensor at constant electric field [cEij ],
piezoelectric stress tensor [eij ] and the relative permit-
tivity tensor at constant stress [εTij ] of the PZT4 are as
follows [18]:
[sEij ] =

12.3 −4.05 −5.31 0 0 0
−4.05 12.3 −5.31 0 0 0
−5.31 −5.31 15.5 0 0 0

0 0 0 39 0 0
0 0 0 0 39 0
0 0 0 0 0 32.7

× 10−12m2/N

[cEij ] = [sEij ]
−1 =


1.389 0.778 0.742 0 0 0
0.778 1.389 0.742 0 0 0
0.742 0.742 1.154 0 0 0
0 0 0 0.256 0 0
0 0 0 0 0.256 0
0 0 0 0 0 0.305

× 1011N/m2

[eij ] =


0 0 −4.1
0 0 −4.1
0 0 14.1
0 0 0
0 10.5 0

10.5 0 0


C

m2

[εTij ] =

 1475 0 0
0 1475 0
0 0 1300


The electrical properties of the piezoelectric ring

should be inserted to the software to apply the bound-
ary condition of constant electrical field. The trans-
ducer which was designed by the one-dimensional and
the new method was modeled and analyzed using AN-
SYS software. The number of elements was 35078.
The modal analyses were done at free mechanical con-
ditions. Piezoelectric electrodes were connected to
ground electrical potential. The dielectric loss fac-
tor of the piezoelectric was entered to the software as
nδ = 0.00132. Figs. 2 and 3 show the results of the
simulations.

Fig. 2. Modal analysis of the designed transducer us-
ing the apparent elasticity method.

Fig. 2 shows that the first longitudinal mode shape
of the transducer whose design used the apparent elas-
ticity method. The resonance frequency was 19135Hz.
There is the error of 4.3% between the design resonance
frequency and the numerical simulation.

Fig. 3 shows that the first longitudinal mode
shape of the transducer whose design used the one-
dimensional method. The resonance frequency was
18054Hz. There is the error of 9.7% between the design
resonance frequency and the numerical simulation.

4. Experimental Tests

The transducer which was designed with the new
method is shown in Fig. 4, indicating the transducer
and its components. The transducer was excited by an
ultrasonic power supply with a square bipolar signal
of 500V zero to peak, 5A zero to peak currents and
the frequency range of 15kHz through 40kHz. Volt-
age amplitude was kept constant, and the frequency
was swept near the predicted resonance frequency. The
electrical impedance of the transducer decreased at the
resonance frequency. Consequently, maximum electri-
cal current was consumed at this frequency. This be-
havior was used to find the resonance frequency of the
transducer.

The mechanical preload of the transducer which
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was applied with the central bolt was 34MPa [7]. Heat
glues were used to damp the vibrations of the elec-
trodes. The melting point of the glue was 85 Co and
its thickness was about 1 cm. Experimental resonance
frequency of the transducer was measured as 19810Hz.
Fig. 5 shows the experimental setup of measuring
the radial and longitudinal vibration amplitudes of the

head of the transducer.
The displacements of the head of the transducer

were measured by an eddy current gap-sensor, Model
AEC-5509 manufactured by Applied Electronics Corp,
Japan. The conversion ratio of the sensor was
0.4mm/V. Table 5 summarizes the analytical, numeri-
cal, and experimental results of the transducer.

Fig. 3. a) Modal analysis of the designed transducer using the one-dimensional method, b) Meshed model of
the transducer.

Fig. 4. a) Transducer’s components, b) Assembled transducer.
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Fig. 5. a) Experimental setup of measuring displacements, b) Longitudinal displacement measurement, c)
Radial displacement measurement.

Table 5
Comparison of the analytical, numerical and experimental results.

Parameter Value
Design resonance frequency of the transducer 20000Hz
Numerical resonance frequency of the transducer designed by the one-dimensional
method

18054Hz

Numerical resonance frequency of the transducer designed by the new method 19135Hz
Experimental resonance frequency of the transducer designed by the new method 19810Hz
Radial displacement of the head of the transducer 18 micrometer
Longitudinal displacement of the head of the transducer 35 micrometer
Error between the numerical resonance frequency of the transducer designed by the
one-dimensional method with the design resonance frequency

9.7%

Error between the numerical resonance frequency of the transducer designed by the new
method with the design resonance frequency

4.3%

Error between the experimental resonance frequency with the numerical resonance fre-
quency of the transducer designed by the new method

3.4%

Error between the experimental resonance frequency with the design resonance frequency 0.95%

5. Conclusions

In this paper, a new design procedure for Langevin ul-
trasonic transducers was developed based on apparent
elasticity method. In this method, the effect of lateral
vibrations including both radial and circumferential is
taken into account with the definition of the mechan-
ical coupling coefficient. The mechanical coupling co-
efficient of each part was calculated. The calculated

coefficient was used to modify the wave number and
elastic modulus of each part. The modified parameters
were used to calculate resonance lengths of the com-
ponents. The designed transducers were modeled and
analyzed numerically by ANSYS software. The trans-
ducer designed by the apparent elasticity method was
fabricated and its resonance frequency was compared
with theoretical and numerical one. Also, radial and
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longitudinal displacements were measured experimen-
tally. The error between the theoretical and experi-
mental resonance frequency was 0.95%. The results
indicated that the new design method can fairly pre-
dict the resonance frequency of the transducer.

Appendix A

A.1. Theoretical Equations of the Transducer
Vibrations

A cylindrical element was considered for the analyti-
cal modeling. All stresses exerted on the element are
shown in Fig.1.

Fig. 1A. Cylindrical element of a transducer.
Since the transducer was excited longitudinally,

and its designed natural mode was also longitudinal,
shear stresses were negligible. Therefore the equations
of motion along z and r directions are as follows:

∂σr

σr
+

σr − σθ

r
= ρ

∂2U

∂t2
(A1)

∂σz

∂z
= ρ

∂2U

∂t2
(A2)

By using relations between strain and displace-
ments, the equations can be presented in terms of lon-
gitudinal and radial displacements. According to Pois-
son effect, there is a relationship between longitudinal
and lateral stresses. The relation is modeled using the
mechanical coupling coefficient, n, as follows [10].

n =
σz

σr + σθ
(A3)

Using the relations between stresses and strains
(Hooke’s Law) and also the mechanical coupling co-
efficient, normal strains in the cylindrical coordinate

can be presented as follows:

Sr =
1

2

[
1− ν − 2νn

E
(σr + σθ) +

1 + ν

E
(σr − σθ)

]
(A4)

Sθ =
1

2

[
1− ν − 2νn

E
(σr + σθ)−

1 + ν

E
(σr − σθ

]
(A5)

Sz =
1− ν

n
E

[σz] (A6)

In the above equations, Sr, Sθ and Sz are normal
strains along radial, circumferential and longitudinal
directions, respectively. It is possible to obtain appro-
priate formulation for σr and (σr−σθ) using Eqs. (A4)
and (A5).

σr =
E

2

[
Sr − Sθ

1 + ν
+

Sr + Sθ

1− ν − 2νn

]
(A7)

σr − σθ =
E

1 + ν
[Sr − Sθ] (A8)

A.2. Apparent Wave Number and Elasticity
Modulus of a Cylinder

Longitudinal differential equation of motion is as fol-
lows.

Ez
∂2Uz

∂z2
= ρ

∂2Uz

∂t2
(A9)

where Ez is apparent longitudinal elasticity modulus
which define as follows:

Ez =
E

1− ν

n

(A10)

In Eq. (A9), Uz can be assumed as Uz(z, t) =
uz(z)e

iwt. Therefore, the differential equation can be
presented as follows:

−uz =
ν2z
w2

(
∂2uz

∂z2

)
(A11)

where νz =

√
Ez

ρ
is the apparent longitudinal sound

velocity. The apparent longitudinal wave number is
defined as:

kz =
w

νz
(A12)

Hence, the spatial part of the longitudinal differential
equation is:

∂2UZ

∂z2
+ k2zuz = 0 (A13)

Journal of Stress Analysis/ Vol. 3, No. 2/ Autumn − Winter 2018-19 55



The analytical solution of the equation is as follow:

uz(z) = A sin(kzz) +B cos(kzz) (A14)

A and B are obtained by boundary conditions.

A.3. Radial Frequency Equation of a Hollow
Cylinder

Spatial part of the differential equation of motion along
r direction is as follows:

∂2ur

∂r2
+

∂ur

r∂r
+

(
k2r −

1

r2

)
ur = 0 (A15)

where, kr =
w

νr
is the apparent radial wave number,

and νr =

√
Er

ρ
is apparent radial wave velocity. Er is

apparent radial elastic modulus and expressed as:

Er =
E(1− νn)

(1 + ν)(1− ν − 2νn)
(A16)

The analytical solution of the equation is as follows:

ur(r) = C1J1(krr) + C2Y1(krr) (A17)

where, J1 is the first order, first type Bessel function
and Y1 is the first order, second type Bessel function.
Constant C1 and C2 are achieved by applying bound-
ary conditions of a hollow vibrating cylinder. The
boundary conditions of a free-free hollow cylinder are
zero radial stresses at the internal and external ra-
diuses. The following equations are achieved through
applying boundary conditions at radius b, a.

C1j(a) + C2y(a) = 0 (A18)

C1j(b) + C2y(b) = 0 (A19)

To simplify the equations, the functions y(x) and j(x)
are defined as:

j(x) =

[
krJ0(krx)− 2

J1(krx)

x

]
(1− ν − 2νn)

+ (1 + ν)krJ0(krx) (A20)

y(x) =

[
krY0(krx)− 2

Y1(krx)

x

]
(1− ν − 2νn)

+ (1 + ν)krY0(krx) (A21)

The Eqs. (A18) and (A19) are simplified as follows:

j(a)

j(b)
=

y(a)

y(b)

The radial frequency equation for a hollow cylinder
would be expressed as:

kraJ0(kra)−
(1− ν − 2νn)

(1− νn)
(J1(kra))

krbJ0(krb)−
(1− ν − 2νn)

(1− νn)
(J1(krb))

=

kraY0(kra)−
(1− ν − 2νn)

(1− νn)
(Y1(kra))

krbY0(krb)−
(1− ν − 2νn)

(1− νn)
(Y1(krb))

(A23)

A.4. Radial Frequency Equation of a Solid
Cylinder

Two boundary conditions of a vibrating solid cylin-
der were zero radial stress at the external radius, and
zero radial displacement at the center of the cylinder
ur(r = 0) = 0. Using the boundary conditions, the
radial frequency equation would be as following:

akrJ0(kra)−
[
(1− ν − 2νn)

(1− νn)

]
J1(kra) = 0 (A24)

A.5. Radial Frequency Eequations of Piezoelec-
tric Rings

Radial differential equation of a piezoelectric element,
regardless of the shear strain, would be the same as Eq.
(A1). If the axes 1, 2 and 3 in the Cartesian coordi-
nate system will convert into r, θ, z in the cylindrical
coordinate system, strain Sr, Sθ, Sz could be achieved
using piezoelectric matrix equations as follows [16]:

Sr = SE
11Tr + SE

12Tθ + SE
13Tz (A25)

Sθ = SE
21Tr + SE

22Tθ + SE
23Tz (A26)

Sz = SE
31Tr + SE

32Tθ + SE
33Tz (A27)

where sEij and Ti are piezoelectric the compliance tensor
in constant electric field, and the stress vector, respec-
tively. In the strain equations of the piezoelectric, the
effect of electrical field is ignored. In other words, the
free vibration of the piezoelectric is taken into account
in the zero electrical field. The mechanical coupling
coefficient of piezoelectric is defined as n =

Tz

Tr + Tθ
.

Combining the mechanical coupling coefficient and the
Eqs. (A25) through (A27), the following equations
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would be achieved:

Sr + Sθ = (SE
11 + SE

12)(Tr + Tθ) + 2SE
13Tz

= (SE
11 + SE

12 + 2SE
13n)(Tr + Tθ) (A28)

Sr − Sθ = (SE
11 − SE

12)(Tr − Tθ) (A29)

Sz = SE
13(Tr + Tθ) + SE

33Tz = Tz

(
SE
33 +

SE
13

n

)
(A30)

In the above equations, the piezoelectric compliance
matrix symmetry has been used. The following equa-
tion for stress can be achieved from Eqs. (A28) and
(A29).

Tr + Tθ =
1

SE
11 + SE

12 + 2SE
13n

(Sr + Sθ) (A31)

Tr − Tθ =
1

SE
11 − SE

12

(Sr − Sθ) (A32)

Tr =
1

2

[
1

SE
11 − SE

12

(Sr − Sθ)

+
1

SE
11 + SE

12 + 2SE
13n

(Sr + Sθ)

]
(A33)

Radial differential equation of piezoelectric would be
as:

∂2ur

∂r2
+

1

r

∂ur

∂r
+

(
k2r −

1

r2

)
ur = 0 (A34)

where, the apparent radial elastic modulus, sound ve-
locity and wave number are defined as follows:

Er =
SE
11 + SE

13n

(SE
11 − SE

12)(S
E
11 + SE

12 + 2SE
13n)

(A35)

vr =

√
Er

ρ
(A36)

kr =
w

ρ

√
SE
11+SE

13n

(SE
11−SE

12)(S
E
11+SE

12+2SE
13n)

(A37)

Analytical solution of Eq. (A.34) would be as:

ur(r) = D1J1(krr) +D2Y1(krr)

Using the free vibration boundary conditions of a
piezoelectric ring, i.e. zero stress at the internal
and external radiuses, the radial frequency equation

is achieved as:

kraJ0(kra)−
[
(SE

11 + SE
12 + 2nSE

13)

(SE
11 + nSE

13)

]
J1(kra)

krbJ0(krb)−
[
(SE

11 + SE
12 + 2nSE

13)

(SE
11 + nSE

13)

]
J1(krb)

=

kraY0(kra)−
[
(SE

11 + SE
12 + 2nSE

13)

(SE
11 + nSE

13)

]
Y1(kra)

krbY0(krb)−
[
(SE

11 + SE
12 + 2nSE

13)

(SE
11 + nSE

13)

]
Y1(krb)

(A39)

Spatial part of the longitudinal differential equation of
the piezoelectric is as follow:

∂2uz

∂z2
+ k2zuz = 0 (A40)

where, kz piezoelectric apparent wave number is de-
fined as:

kz =
w√√√√ 1SE

33+
SE
13

n


(A41)

The apparent longitudinal elastic modulus is defined
as:

Ez =
1

ρ

(
SE
33 +

SE
13

n

) (A42)
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