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Abstract

This paper presents two-dimensional stress and strain behavior of a FG
rotating cylindrical shell subjected to internal-external pressure, surface shear
stresses due to friction, an external torque, and constant temperature field.
A power law distribution was considered for thermomechanical material
properties. First order shear deformation theory (FSDT) was used to define
the displacement and deformation field. Energy method and Euler equation
were employed to derive constitutive differential equations of the rotating
shell. Systems of Six differential equations were achieved. Eigenvalue and
eigenvector methods were used to solve these equations. It was found that
the material grading index has a significant effect on stresses and strains
of a rotating functionally graded material cylindrical shell in radial and
longitudinal directions.

Nomenclature
r Radius of an arbitrary layer of cylinder Ri Inner radius
z Coordinate of arbitrary layer of cylinder

respect to middle surface
Vθ Circumferential component of deforma-

tion
R Radius of mid-surface of cylinder Ti Inner temperature
Ur Radial component of deformation T0 Outer temperature
Wx Axial component of deformation εrr Radial strain
R0 outer radius εxx Axial strain
u Displacement component of radial defor-

mation
w Displacement component of axial defor-

mation
εθθ Circumferential strain γrx Shear strain in rx plane
v Displacement component of circumferen-

tial deformation
ϕz Rotational component of radial deforma-

tion
γrθ Shear strain in rθ plane γxθ Shear strain in xθ plane
ϕx Rotational component of axial deforma-

tion
ϕθ Rotational component of circumferential

deformation
σrr Radial stress σxx Axial stress
E Modulus of elasticity σθθ Circumferential stress
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U Total energy τrx Shear stress in rx plane
Pi Inner pressure τrθ Shear stress in rθ plane
P0 Outer pressure τxθ Shear stress in xθ plane
F General potential function σeff Effective stress

1. Introduction

Functionally graded materials (FGMs) are advanced
composites in which element gradation changes con-
tinuously from metal to ceramic phase or vice versa
depending on the requirements. Continuous changes
in the FGM composition results in improving the me-
chanical and thermal properties. Bewar and Duwez
[1] first explained and introduced the FGM concept
theoretically. However, FGM was successfully devel-
oped by Japanese scientists in 1984 for an aerospace
application to attain a thermal gradient of 1000◦K
along 10mm cross-section [2]. Since then FGM has
drawn more attention in most of the engineering utili-
ties such as carriage systems, medical application, nu-
clear components, space vehicle components, energy
storage systems, aero engine components, thermal pro-
tection packages for high temperature environments
and etc. [3]. Shells are structural elements widely used
in applications such as mechanical, civil, aeronautical,
and marine engineering. Shell structures are used as
roofs, liquid storage vessels, nuclear plant accessories,
piping structures, and pressure vessels [4].

Hollow composite cylindrical shells have many en-
gineering uses because composite materials have tailor-
ing properties, less weight, low maintenance, and high
performance with increased service life. Functionally
graded material is a type of composite appropriate for
bulk and shell material application. With increasing
usage of cylindrical shells and FGM in various applica-
tions, it is necessary to investigate the performance of
FGM cylindrical shells at different working load condi-
tions. Cylindrical shells mainly fail due to axial com-
pressive stresses, buckling loads and large deformations
due to internal pressure.

Various problems of FGM have attracted consid-
erable attention in recent years. That is an impor-
tant topic in engineering because of many rigorous ap-
plications. The study on the stresses and strains in
rotating hollow cylinders has never stopped because
of the importance of these basic elements in several
mechanical, building, power and computer engineer-
ing applications. Loghman and Wahab [5] studied
the thermo-elasto-plastic and residual stresses in thick-
walled cylindrical pressure vessels of strain hardening
material. Horgan and Chan [6] solved the classic prob-
lem of stress distribution in an inhomogeneous isotropic
rotating solid disc and pressurized hollow cylinder.

Moradi et al. [7] investigated reverse yielding and
the Baushinger effect on residual stresses in thick-
walled cylinders. Tutuncu and Ozturk [8] calculated
the stress distribution in an axisymmetric structure.

They derived closed-form solutions for the stresses and
deformations of functionally graded cylindrical and
spherical shells under internal pressure. Ghorbanpour
et al. [9] presented the Bauschinger and hardening ef-
fect on residual stresses in thick-walled cylinders of SUS
304. A computational study on functionally graded
rotating solid shafts was carried out by argeso and
Eraslan [10]. Displacements and stresses of rotating
FGM thick hollow cylindrical shell under internal pres-
sure and thermal load was studied by Zamani nejad
and Rahimi [11].

Using plane theory of elasticity and procedure of
complementary functions, Tutuncu and Temel [12] de-
termined axisymmetric deformations and stresses in
functionally graded hollow cylinders, disks, and spheres
under uniform internal pressure. Eipakchi [13] de-
rived stresses and displacements of a thick conical
shell with variable thickness subjected to distributed
nonuniform internal pressure analytically using third-
order shear deformation theory (TSDT). Azturk and
Galgec [14] studied elastic-plastic stress in a long func-
tionally graded solid cylinder with fixed ends subjected
to uniform heat generation. Khorshidvand and Javadi
[15] investigated deformation and stresses in FG ro-
tating hollow disk and cylinder Subjected to Thermal
and Mechanical Load. Ghannad et al. [16] inves-
tigated elastic behavior of pressurized thick cylindri-
cal shells with variable thickness made of functionally
graded materials using FSDT. Zamani nejad et al. [17]
studied the Effect of exponentially-varying properties
on Displacements and Stresses in Pressurized Func-
tionally Graded Thick Spherical Shells using Iterative
Technique. Fatehi and Zamani nejad [18] considered
the effects of material gradients on the onset of yield
in fgm rotating thick cylindrical shells. Zamani nejad
and Gharibi [19] considered the effect of material grad-
ing index on stresses of thick FGM spherical pressure
vessels with exponentially-varying properties.

Jabbari et al. [20] studied the effect of material gra-
dient on stresses of FGM rotating thick-walled cylindri-
cal shell with longitudinal variation of properties under
non-uniform internal and external pressure. Arefi et
al. [21] investigated the effect of axially variable ther-
momechanical loads on the 2D thermo-elastic response
of FG cylindrical shell. Singh et al. [22] investigated
stress and deformation of rotating cylindrical pressure
vessel of functionally graded material modeled by Mori-
Tanaka scheme. Habibi et al. [23] evaluated the stress
intensity factor (SIF) in FGM thick-walled cylindrical
vessel. Jabbari et al. [24] considered the analysis of
stress in rotating thick truncated conical shells with
variable thickness under thermomechanical loads.
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Fig. 1. A rotating cylinder made of FGM material and the selected coordinate system.

From the abovementioned literature, one can real-
ize that a rotating cylinder under an applied external
torque on a friction bed has not yet been considered.

The main objective of this paper is stress and strain
analysis of a finite length rotating FG cylinder sub-
jected to a distributed shear stress due to outer surface
friction, an external driving torque, internal-external
pressure and a uniform temperature distribution using
FSDT.

2. Temperature Distribution

For the cylindrical shell in this study a steady state
symmetrical conduction heat transfer without heat
generation was considered. The reduced heat conduc-
tion equation in this case is written [25] as follows:

d

dr

(
kr

dT

dr

)
= 0 (1)

Using the power law distribution for the material ther-
mal conductivity coefficient, (kT = rβk) the above
equation can be written as:

d

dr

(
rβ+1k

dt

dr

)
= 0 ⇒ rβk

dT

dr
+ rβ+1k

d2T

dr2
= 0,

(2)
T (r) = −A1r

−β +A2 (3)

A1 =
Ti − T0

−r−β
i + r−β

0

, A2 =
Tir

β
i − T0r

β
0

rβi − rβ0
, (4)

T (r) = − Ti − T0

−r−β
i + r−β

0

r−β +
Tir

β
i − T0r

β
0

rβi − rβ0
(5)

where Ti and T0 are the inner and outer temperatures
at ri and r0 respectively.

Fig. 2. Temperature distribution versus radius for five
grading index.

3. Formulation Based on the FSDT
Technique

In the FSDT, the assumption is that the planes nor-
mal to the mid-plane remain plane after deformation
but not necessarily perpendicular to it after loading
and the consequent deformations. In this case, shear
strain and stress are considered. In the classical theory
of shells, it is assumed that the planes normal to the
mid-plane remain plane even after deformation occurs.

According to the selected coordinate system (r, x, θ)
one can write:

r = R+ z, −h

2
≤ z ≤ +

h

2
(6)

where h and L are the shell thickness and length of the
cylinder.

The general axisymmetric displacement field
(Ur,Wx, Vθ) according to Mirsky-Hermann’s first-order
theory is expressed on the basis of axial and radial dis-
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placements, as follows:

Ur(x, θ) = U(x, θ) + Zϕr(x, θ)

Wx(x, θ) = W (x, θ) + Zϕx(x, θ) (7)
Vθ(x, θ) = V (x, θ) + Zϕθ(x, θ)

where ϕr, ϕx and ϕθ are the middle surface rotation
components. Furthermore, U , W and V are the func-
tions used to define the displacement field. The strain-
displacement formulas in the cylindrical coordinate sys-
tem are:

εrr =
∂u

∂z
+ z

∂ϕz

∂z
+

∂z

∂z
ϕz = ϕz

εθθ =
1

r
(u+ zϕz) =

u

R+ z
+ z

ϕz

R+ z

εxx =
∂w

∂x
+ z

∂ϕx

∂x

γrθ =
1

r

∂uz

∂θ
+

∂vθ
∂z

− vθ
r

= ϕθ −
v

r
− z

ϕθ

r

γrx =
∂wx

∂z
+

∂vz
∂x

= ϕx +
∂u

∂x
+ z

∂ϕz

∂x

γxθ =
1

r

∂wx

∂θ
+

∂vθ
∂x

=
∂v

∂x
+ z

∂ϕθ

∂x

(8)

Stress-strain relations are written as follows:

σrr =
E

(1 + v)(1− 2v)

[(1− v)εrr + v(εθθ + εxx)− (1 + v)αT ]

σθθ =
E

(1 + v)(1− 2v)

[(1− v)εθθ + v(εrr + εxx)− (1 + v)αT ]

σxx =
E

(1 + v)(1− 2v)

[(1− v)εxx + v(εrr + εθθ)− (1 + v)αT ]

τrθ = K
E

2(1 + v)
γrθ, τrx = K

E

2(1 + v)
γrx,

τθx = K
E

2(1 + v)
γθx

(9)

According to the principle of virtual work, the vari-
ations of strain energy must be set equal to the varia-
tions of the external work as follows:

δU = δW (10)

where δU is the variation of total strain energy of the
elastic body and δW is the variation of total external
work due to internal, external pressure, friction force,
and centrifugal body force. The strain energy is then
written as:

U =

∫∫∫
v

udv =

∫ 2

0

π

∫ L

0

∫ +h/2

−h/2

ur dr dx dθ

= 2π

∫ L

0

∫ +h/2

−h/2

u(R+ z) dz dx

(11)

where:

⇒ u =
1

2

E

(1 + v)(1− 2v)[
[(1− v)](ε2rr + ε2θθ + ε2xx) + 2v(εrrεθθ + εrrεxx + εθθεxx)

−(1 + v)αT (εrr + εθθ + εxx) +
K(1− 2v)

2
[γ2

rθ + γ2
rx + γ2

θx]

]
(12)

The external work is the sum of works due to internal,
external pressure (W1), centrifugal body force (W2)
and friction force (W3):

W = W1 +W2 +W3 (13)

where: 

W1 =

∫ L

0

(d1u+ d2ϕz) dx

W2 =

∫ L

0

(H1u+H2ϕz) dx

W3 =

∫ L

0

(I1v + I2ϕz) dx

(14)

That:

d1 = 2π

[
Pi(x)

(
R− h

2

)
− P0(x)

(
R+

h

2

)]

d2 = 2π
h

2

[
−Pi(x)

(
R− h

2

)
− P0(x)

(
R+

h

2

)]

H1 = 2πρ0ω
2

(
R2h+

R2h3

2
+

h5

80

)
(15)

H2 = 2πρ0ω
2

(
R2h3

3
+

Rh5

40

)
I1 = −2πµP0(x)

I2 = −2π

(
h

2

)
µP0(x)

Taking variation from energy relation we have:

U =

∫ L

0

(Us − UT ) dx−
∫ L

0

(W1 +W2 +W3) dx

=

∫ L

0

F (u,w, v, ϕz, ϕx, ϕθ) dx (16)

Among the 6 variables in the relations obtained,
Euler’s equations are:

∂F

∂qi
− ∂

∂x

 ∂F

∂

(
∂qi
∂x

)
 = 0,

qi(i = 1, 2, 3, 4, 5, 6) = u, ϕr, w, ϕx, v, ϕθ

(17)

where F is general potential function.
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By applying the Euler equations and using equa-
tions written in appendix A system of differential equa-
tions governing the problem is obtained as follows:

[G1]
d2

dx2
{y}+ [G2]

d

dx
{y}+ [G3]{y} = {F}

{y} = {u, ϕr, w, ϕx, v, ϕθ}T
(18)

Matrix G1, G2, G3 and F are written in appendix B.
Solving the differential equations, general and par-

ticular solutions are written as follows:

{y} = {yg}+ {yp} (19)

That general solution is represented as follows:

{yg} = {v}iemx (20)

Finally, by substituting special values, the general so-
lution is written as follow:

{yg} =
10∑
i=1

ci{v}iemix + c11x+ c12 (21)

c11x + c12 term is due to a pair of zero roots. Given
the presence of mixed roots, these roots need to be
transformed into a true form to continue solving [26]:

λi,i+1 = a± bi (22)

Then the special vectors derived from these roots will
be in the following form:

λi,i+1 = Γ± Ωi (23)

Particular solution consists of thermal and mechanical
components as:

{y}p = {y}p1 + {y}p2 (24)

Finally, with determination of unknown coefficients the
solution is obtained as:

{y} =

10∑
i=1

ci{v}iemix + c11x+ c12 + {y}p (25)

Substituting the solution into Eqs. (9), (10) the
stresses and strains can be calculated where the for-
mulation of effective stress and strain in terms of stress
and strain components is as follows:

σe =
1√
2

[
(σrr − σθθ)

2 + (σrr − σxx)
2

+(σθθ − σxx) + 6τ2rθ + 6τ2rx + 6τ2θx

]1
2 (26)

εe =

√
2

3

[
(εrr − εθθ)

2 + (εrr − εxx)
2

+(εθθ − εxx) + 6ε2rθ + 6ε2rx + 6ε2θx

]1
2 (27)

4. Results and Discussion

In this section the numerical results for effective stress
and strain components are presented in terms of grad-
ing index. Power law distribution for radial dependent
properties of FGM [3] is written as follows:

P = P0

(
r

Ri

)β

(28)

where P represents a property and the P0 is the refer-
ence material property.

The reference properties, geometry and loading
data used in this paper for rotating FG hollow cylinder
are assumed to be:

Table 1
Basic material properties, geometry and loading data used in
this paper.
E0 220GPa
v 0.3

α0 1.2× 10−06 1
◦C

Ri 0.04m
R0 0.06m
Pi 80MPa
P0 30MPa
Ti 150◦C
T0 70◦C
l 1m

4.1. Comparison and Validation

Before presentation of full numerical results, a compar-
ison with other results is required. For this aim, the nu-
merical analysis based on Abaqus package was selected.
Shown in Fig. 3 is comparison between present results
using analytical method and corresponding results us-
ing the Abaqus software for a case study. This com-
parison indicates that the present results are in good
agreement with results of numerical analysis. Type of
element that was used is C3D8T and number of ele-
ments for Convergence were 50160.

Fig. 3. Comparison between the present results using
analytical method and corresponding results using the
Abaqus software.
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Effective stress distribution in radial direction is
shown in Fig. 4. For negative values of grading in-
dex and for homogeneous material (β = 0) maximum
values of effective stresses are located at the inner sur-
face of the shell and their minimum values are located
at the outer surface of the shell. However, there are no
significant changes throughout thickness for positive
values of grading index. In Fig. 5 shear strain ver-
sus radius is shown and the minimum absolute value
of which belongs to a material identified by the grad-
ing index β = +2 and the maximum absolute value
belongs to β = −2.

In Figs. 6 and 7 shear strains in longitudinal di-
rection are shown. Except for the end condition there
is no significant changes for different material proper-
ties. Figs. 8, 9, and 10 present radial, longitudinal and
tangential displacements, respectively.

Fig. 4. Effective stress (σeff ) versus radius.

Fig. 5. Shear strain (γrx) versus radius.

Fig. 6. Shear strain (γxθ) versus length.

Fig. 7. Shear strain (γrx) versus length.

Fig. 8. Radial displacement (Ur) versus radius.

Fig. 9. Longitudinal displacement (Wx) versus radius.

Fig. 10. Tangential displacement (Vθ) versus radius.
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Fig. 11. Tangential displacement (Vθ) versus length
for external torque for (β = 0).

5. Conclusions

In this work, formulation of 3D thermo-elastic anal-
ysis of an FG rotating cylinder subjected to inter-
nal/external pressure and shear stresses due to fric-
tion bed was performed using first-order shear defor-
mation theory (FSDT). The mechanical properties ex-
cept Poisson’s ratio were variable along the radial di-
rection according to a power law distribution. By us-
ing the boundary conditions, constant coefficients of
the six differential equations were obtained. It is con-
cluded that the grading index has a significant effect
on stresses and strains.
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