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Abstract

In this study, a two-stage damage identification approach based on modal
flexibility differences and whale optimization algorithm (WOA) was applied
to localize and quantify damages in large-scale double-layer truss structures.
In first stage, damage locating vector (DLV) method using EDS (exponential
decreased stress) was employed to find the real damaged elements of structure;
then, WOA algorithm was used to determine the severity of suspected
damaged elements obtained from the first stage. To evaluate the reliability
of the proposed approach, two large-scale double-layer truss structures
were studied. Furthermore, to assess the effect of noise on the accuracy
of damage detection, the article compares the results of EDS with NCE.
Calculation results demonstrate that the combination of DLV method using
EDS and WOA algorithm provides an effective tool to carefully determine
the location and the severity of structural damages in noisy condition
directly. Moreover, the approach determines damages even though there are
the low number of used mode shapes and a high number of structural elements.

1. Introduction

To detect damage of structures and validity of their
applicability and integrity, Structural Health Moni-
toring (SHM) has been studied by many researchers
[1, 2]. Previously, Farrar and Worden [3] and Sohn et
al. [4] summarized damage identification methods of
SHM briefly.

Because of the effect of damage on stiffness of
structural components, modal properties of structure
change. Yan et al. [5] summarized researches studied
by using dynamic characteristics of structure. Addi-
tionally, Salawu [6] reviewed studies of utilizing vari-
ations of natural frequencies and mode shapes and
discussed the cheap and easy use of the variations.
Messina et al. [7] provided the Multiple Damage Loca-
tion Assurance Criterion (MDLAC) to detect damage

of structures. Change in stiffness of elements causes
change in the flexibility matrix of the structure. It has
been used by many researchers, for example, Pandey
and Biswas [8] used changes in flexibility matrix of
healthy and damaged elements to localize damaged el-
ements and showed that flexibility matrix can be pre-
cisely calculated by low-frequency modes of the struc-
ture while other modal characteristics of structure need
high frequency modes. Seyedpoor [9] proposed a new
indicator which is named Flexibility Strain Energy
Based Index (FSEBI) by using changes of strain en-
ergy and flexibility matrix of structure. Zhao and De-
Wolf [10] derived sensitivity of mode shapes, natural
frequencies, and modal flexibility to damage through
introducing sensitivity coefficient. They compared the
maximum and minimum of sensitivity coefficients and

∗Corresponding author: S.R. Hoseini Vaez (Associate Professor)
E-mail address: hoseinivaez@qom.ac.ir
http://dx.doi.org/10.22084/jrstan.2019.18031.1076
ISSN: 2588-2597

95



concluded that sensitivity of modal flexibility is more
than others. Many researches in the field of damage
identification worked through one-stage [11–16] and
two-stage [17–19] methods. The most common method
among them was to use a metaheuristics optimization
algorithm with determination of an inverse optimiza-
tion problem. In such approach, damaged elements
were identified by their damage severity together. But
many researchers utilized wide range of metaheuristics
algorithms, for instance, Begambre and Laier [20] in-
troduced PSOS algorithm, combining particle swarm
optimization algorithm (PSO) and simplex approach.
They formulated an objective function based on the
Frequency Response Function (FRFs) of the systems.

All in all, though the use of one-stage methods pro-
vided acceptable accuracy for damage identification of
small-scale structures, it has no competence in large-
scale structures where many excessive healthy elements
are localized in every try, and it causes difficulties such
as long running time, high computational costs, and de-
crease of accuracy for quantifying damage severity of
damaged elements. Therefore, the one-stage method
does not have application to detect damage.

One of the most useful approaches to identify dam-
age is to divide the process into two stages, includ-
ing locating damaged elements and quantifying damage
severity of localized elements. The approach makes an
increase in the rate of localizing damaged elements in
the first stage, especially in the large-scale structures,
as well as, improvement in the accuracy of quantify-
ing damage severity in the second stage due to the de-
crease in the number of algorithm variations. To local-
ize damaged elements in the first stage, Moslem and
Nafaspour [21] utilized residual force method. With
integrating mode shapes and natural frequencies, Guo
and Li [22] proposed evidence theory to localize dam-
aged sites in the first stage. They provided a micro-
search GA to quantify the damage severity in the sec-
ond step and analyzed a numerical model of a can-
tilever beam to compare the provided method to the
MDLAC and the simple genetic algorithms. Bernal [23]
proposed Damage Locating Vector (DLV) method to
localize damage in linear elastic structures through de-
signing the static force vectors causing zero stress over
damaged elements. Seyedpoor and Montazer porposed
[24, 25] new two-step approaches to identify damage in
trusses. They introduced a new modal residual vector-
based indicator and a flexibility-based damage prob-
ability to locate the potentially damaged elementsin
the first step, and then differential evolution algorithm
was used to determine severity of located elements.
Many other researchers utilized two-stage approaches
such as Seyedpoor [9] and Vo-Duy et al. [26] who used
modal strain energy. Mousavi and Gandomi [27] also
proposed a new hybrid approach which utilized only
one mode shape and its structural corresponding eigen-

value to conduct damage identification.
The large-scale engineering structures are of the im-

portant ones in which damage identification accompa-
nies many difficulties, challenging researchers to vali-
date detection of damage precisely. Spatial structures
are ones which are examined in three dimensions and
are extensively used in large-span spaces without need
to disruptive columns. Double-layer trusses are the
most common type of structures which have been used
extensively. There is approximately no limit on de-
signing of this type of structures [28], for this reason
researchers are eager to use this characteristic of the
double-layers and have employed their numerical mod-
els to examine their achievements on large-span mod-
els.

There are several instruments and operating mode
shapes; as Wireless Sensor Networks (WSNs) that ob-
tain dynamic parameters such as mode shapes in real-
world truss structures. For example, Gao et al. [1]
experimentally verified a 5.6m (18ft)-long spatial truss
structure and showed that DLV can be utilized with
low number of sensors and modes, while 40% stiff-
ness reduction of single member was subjected by the
change of modal properties.

Fallah et al. [18] proposed a two-stage approach to
damage identification of large-scale trusses. But they
could not find damages directly in noisy condition, so
the damages were detected statistically. This article
has employed DLV method as a candidate approach to
localize damaged elements of large-scale double-layer
truss structures directly in noisy condition. Further-
more, Whale Optimization Algorithm (WOA) [29] was
applied to quantify the damage severity of located el-
ements. The reason why WOA was chosen is that
due to that the problem has a large number of vari-
ables and the many local solutions, WOA inherently
has high local optima avoidance mechanism. Although
loading DLV vectors into coordinate sensor leads to
zero stress over damaged elements, it can result in zero
stress over healthy elements. Therefore, normalized cu-
mulative energy (NCE) [30] and normalized cumulative
stress (NCS) [31] were employed to estimate DLV, and
in this article, exponential decreased stress (EDS) has
been provided.

Sections of this study are organized as follows: in
section 2, damage identification approach is presented.
The whale optimization algorithm (WOA) is presented
in section 3. Scenario studies are indicated in section
4. Finally, conclusion is given in section 5.

2. Damage Identification Approach

Fig. 1 shows the stages of damage identification ap-
proach in this study. The used approach has two main
stages, localization of damaged elements and quantifi-
cation of damage severity of located ones.
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2.1. Localize Damaged Elements

2.1.1. Simulate the Damage

In this article, the damage was simulated by reduc-
ing elasticity modulus of elements and considering β
vector. Every array of β vector ranges between zero
for completely intact element, and one for completely
damaged one. The vector reduces elasticity modulus
of structural elements as follows:

Edj = (1− βj)× Ej (1)
where Edj  and Ej are elasticity moduli of the jth ele-
ment in damaged and healthy conditions, respectively.
Also the vector β varies in different considered scenar-
ios.

Fig. 1. Damage identification approach.

2.1.2. Add Noise to Modal Data

In practice, avoiding the noise during measurement
modal data such as mode shapes and natural frequen-
cies is impossible. In this study, the error (noise) was
added to the modal data as follows [15, 32]:

ωj = ωj × (1 + ηω × rand[−1, 1]) (2)
ϕij = ϕij × (1 + ηϕ × rand[−1, 1]) (3)

where ωj and ϕij are jth natural frequency and ith de-
gree of freedom in ith mode shape for noisy condition,
respectively. η is noise level where ηω and ηϕ are 1%
and 3%, respectively.

2.1.3. Design DLV Loads

Damage Locating Vectors (DLVs) were treated as static
force vectors in DLV method. The static force vec-
tors were designed through the null space of the change
in flexibility matrix of intact and damaged structure.
Loading the vectors into sensor coordinates resulted in
in zero stress over damaged elements. The flexibility
matrix of structure can be calculated by using modal
properties as follows:

F =

ndof∑
j=1

1

ω2
j

× ϕj × ϕT
j (4)

in which, ωj and ϕj are the jth natural frequency and
mass-normalized mode shape, respectively; ndof is the
number indicating degree of freedom. Moreover, flex-
ibility matrix can be fairly accurately estimated by a
few low mode shapes, nm, as follows [8]:

F̃ ≈
nm∑
j=1

1

ω2
j

× ϕj × ϕT
j (5)

Assume a linear system in the pre and post damage
states. Suppose a number of created load distributions
are applied to the intact and damaged structures and
produce identical deformations. If all these loads are
defined in L matrix, one can say:

(F̃h − F̃d)× L = 0 (6)

or

∆F̃× L = 0 (7)

where F̃h and F̃d are flexibility matrices of intact and
damaged states, respectively. There are two possible
states for the above equations: first, ∆F̃ = 0, in this
scenario the flexibility matrices of intact and damaged
conditions are equal and there is no damage (which is
contrary to our assumption) then ∆F̃ ̸= 0; second, ∆F̃
is not full rank and L comprises the vectors that make
the null space. The null space and its corresponding
load vectors can be estimated by a singular value de-
composition (SVD) as follows [23]:

∆F̃ = UΣVT = [U]

[
Sr1 0
0 Srn ≈ 0

] [
ṼT

LT

]
(8)

in which U and V are orthogonal matrices that jth col-
umn of them are the corresponding left and right singu-
lar vector, respectively; Σ is diagonal matrix and shows
singular values of ∆F̃ and Sr1 > Sr2 > · · · > Srn ; L
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and Ṽ T are a basis for the null space and the row space,
respectively.

Therefore, every column of L matrix is designed as
a Damage Locating Vector or DLV. Loading every col-
umn of L matrix into the sensor coordinates leads to
zero stress over the damaged elements. According to
the position and number of the sensors, using one sin-
gle DLV vector can probably locate excessive healthy
elements in addition to the certain ones [23]. For this
reason, NCS and NCE are provided [30, 31, 33]. In or-
der to locate damaged elements, the accuracy of both
NCE and NCS decreases by increasing the number of
structural elements and decreasing the number of con-
sidered modes.

2.1.4. Calculate EDS Index

In this section, EDS (Exponential Decreased Stress)
has proposed to well localize the damaged elements of
large-scale spatial structures. Studies on responses of
structural stress showed that the most positive stresses
of the damaged elements are between 0 and 1, while
for other elements this amount equals to much larger
than 1. EDS uses the point and decreases the stress of
the damaged elements, and increases the stress of the
healthy ones through exponentiation of stresses. When
ith column of L matrix is applied to sensor coordinates,
stress of elements is given by:

σe
i = Eeεe (9)

where

σe
i = [σ1

i , σ
2
i , . . . , σ

ne
i ]; e = [1, 2, . . . , ne] (10)

where E and ε are elasticity modulus and strain, re-
spectively, and ne is the number of structural elements.
EDS of every element is equal to:

EDSe =
EDSe

max
k

{EDSk}
(11)

where

EDSe =
nDLV∏
i=1

σe2

i (12)

where nDLV is the DLVs’ number. It is clear that the
high number of DLVs makes more desirable results.

2.2. Quantify Damage Severity of the Located
Elements

2.2.1. Formulate the Objective Function

In this step, an objective function based on changes of
modal flexibility of structure is utilized. Compared to

the modal data such as mode shapes and natural fre-
quencies, structural flexibility is more sensitive to dam-
age [10]. According to the mentioned points, Perera et
al. [34] definedan objective function, f , as follows:

f = 1−MACFLEX = 1−
nm∏
i=1

MACFLEXi (13)

where

MACFLEXi =
|FT

num,iFexp,i|2

(FT
num,iFnum,i)(FT

exp,iFexp,i)
(14)

in which, Fexp
i and Fnum

i are experimental and analyti-
cal flexibility vectors corresponding to ith mode shape
of structure, respectively, which collect the diagonal
terms of the flexibility matrix; MAC is also a modal
assurance criterion that measures correlation between
two vectors Fnum

i and Fexp
i . If the correlated flexibil-

ity vectorsequate each other, the MAC will have values
next to 1. Values of objective function were normalized
between zero and one that high and low values of them
demonstrate high and low correlation, respectively.

2.2.2. Apply the Algorithm

Solving inverse optimization problem was utilized to
assess the damage extent of the reported damaged ele-
ments. Therefore, the whale optimization algorithm
presented by Mirjalili and Lewis [29] was utilized.
Hence, every located scenario was run by WOA and
best (with least value of objective function) and aver-
age solutions were reported. Details of the algorithm
are given in section 3.

3. Whale Optimization Algorithm,
WOA

Whale Optimization Algorithm is a swarm-based tech-
nique, introduced by Mirjalili and Lewis [29]. The
WOA algorithm was proposed based on social behavior
of humpback whales. WOA works based on bubble-net
hunting strategy.

According to the strategy, the humpback whales
hunt small fishes or group of krill close to surface, i.e.,
they swim around the prey about a shrinking circle and
along a path similar to spiral simultaneously. There-
fore, they make distinguishing bubbles along a circle or
a path similar to shape of ‘9’. To update the location
of the whales within optimization process, there is a
50% probability for choosing between the spiral model
and shrinking encircling mechanism. The strategy was
mathematically modeled as follows:

3.1. Shrinking Encircling Preys

Humpback whales encircle preys after identifying the
location of them. The WOA presume that the current
best solution is target prey as the optimal solution is
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not known a priori. Then, other search agents update
their position in the current iteration, t, as follows:

D = |C ·X∗(t)−X(t)| (15)
X(t+ 1) = X∗(t)−A ·D (16)

where X and X∗ are the position vector and the best
position vector obtained so far, respectively; the signs
|| and · denote the absolute value and an element-by-
element multiplication, respectively; C and A are fac-
tor vectors that are given as:

A = 2a · rand− a (17)
C = 2 · rand (18)

in which a decreases linear from 2 to 0 (in both ex-
ploitation and exploration phases) and rand is a vector
with random number in the range (0, 1).

3.2. Spiral Bubble-net Feeding Behavior (Ex-
ploitation Phase)

To imitate the movement of the whales which is simi-
lar to helix, the distance between the hunt and whale
is firstly calculated:

Dt = |X∗(t)−X(t)| (19)

Then, spiral equation is utilized between the loca-
tion of hunt and whale as follows:

X(t+ 1) = D′ · ebl · cos(2πl) +X∗(t) (20)

where l and b are a random number in the range of
(−1, 1) and a constant factor for determining the shape
of the logarithm spiral, respectively.

In addition to the mentioned approach, the whales
search randomly for hunt as follows:

3.3. Search for Hunt (Exploration Phase)

Humpback whales search randomly such thatsearch
agent will be forced to replace far away from a ref-
erence one if A with the random valueless than −1 or
greater 1 is used. So considering a selected search agent
instead of the best one acquired so far, the location of
search agent is updated as follows:

D = |C ·Xrand −X| (21)
X(t+ 1) = Xrand −A ·D (22)

in which Xrand is a random location.
In last iteration, X∗ that is the best search agent in

objective function terms is reported as solution of the
problem.

4. Solving Scenario Sudies
In this section, to show the efficiency of EDS and the
algorithm, two large-scale double-layer trusses such as

a 200-bar double layer grid and a 960-member double
layer grid with some multiple scenarios are studied. For
every example, three different multiple scenarios with
four, six, and eight damaged elements are considered.
Because the EDS values of elements change within each
run of DLV, 30 independent runs of the DLV procedure
were performed. Then, the mean values of the EDS
values corresponding to all elements with various num-
bers of modes (6, 8 and 10 first modes) were shown in
every scenario of each example. To demonstrate the ef-
ficiency of EDS, the results of NCE are displayed and
compared to the results of EDS. Then detecting the
suspected damaged elements, damage severity of these
elements were assessed by WOA algorithm in noise-
added condition. The best (least obtained value of
objective function) and the average calculated results
during ten runs were compared to the results of GA al-
gorithm to show the ability of WOA algorithm. More
details about GA algorithm can be found in Ref. [2].
The eight first modes were used for all scenarios. For
all examples, the number of iterations was assumed as
200 and population size was considered as 100. The
results were reported to three decimal places. In the
figure of each example, the damaged elements of sce-
narios are bolded.

4.1. A 200-bar Double Layer Grid

In this study, the first example was adouble-layer grid
truss with dimension of 10 × 10m and height of 0.5m.
This structure was investigated in the field of optimiza-
tion by Gholizadeh et al. [35], considering frequencies
constraints. The details of bottom, top, and diago-
nal layers of the structure are illustrated in Fig. 2.
The material density and the elasticity modulus were
taken equal to 7850kg/m3 and 2.1 × 1011N/m2, re-
spectively. Non-structural masses of 19620kg were at-
tached to each free node which were in the top layer.
The cross-sectional areas were taken from the result of
[35]. The details of three multiple damage scenarios
are presented in Table 1.

4.1.1. Results and Discussions

For all scenarios, EDS and NCE of all elements in noisy
condition are shown in the Figs. 3-5.

The part (a) of Figs. 3-5 shows that the EDS of
the damaged elements is less than that of the others
and they are identified as suspected damaged elements.
Additionally, the figures show that the more number of
modes is used, the higher precision in measurement of
EDS becomes obtained and the damaged elements are
identified better. While part (b) of the figures show
that the NCE of some healthy elements decreased hap-
hazardly and real damaged elements are not exactly-
detected.
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Fig. 2. A 200-bar double layer grid.

Table 1
Damage scenarios of the 200-bar double-layer grid.

Scenario Damaged elements Severity of damage
1 38, 82, 171, 195 0.25, 0.20, 0.30, 0.25
2 20, 29, 42, 48, 105, 137 0.10, 0.25, 0.20, 0.10, 0.25, 0.15
3 25, 30, 49, 135, 140, 161, 163, 187 0.25, 0.15, 0.10, 0.20, 0.25, 0.15, 0.08, 0.05

Fig. 3. The results of 200-bar double layer grid for first scenario in noisy condition. a) EDS. b) NCE.
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Fig. 4. The results of 200-bar double layer grid for second scenario in noisy condition. a) EDS. b) NCE.

Fig. 5. The results of 200-bar double layer grid for third scenario in noisy condition. a) EDS. b) NCE.

Tables 2-4 show damage severities of reported dam-
aged elements assessed by WOA algorithm during ten
runs. Furthermore, Table 5 shows damage severities of
the elements estimated by GA algorithm.
Table 2
Damage severities of the suspected damaged elements assessed
by WOA for the first scenario of the 200-bar truss structure.

No. Elements and damage severity
38 82 171 195

1 0.249 0.200 0.240 0.250
2 0.250 0.200 0.280 0.252
3 0.250 0.200 0.293 0.252
4 0.250 0.200 0.316 0.247
5 0.249 0.200 0.319 0.249
6 0.250 0.200 0.322 0.247
7 0.249 0.200 0.265 0.253
8 0.250 0.200 0.312 0.248
9 0.250 0.200 0.303 0.249
10 0.250 0.200 0.274 0.252
Mean 0.250 0.200 0.303 0.249
Best 0.250 0.200 0.293 0.250

Table 3
Damage severities of the suspected damaged elements estimated
by WOA for the second scenario of the 200-bar double-layer grid.

No. Elements and damage severity
20 29 42 48 105 137

1 0.099 0.234 0.206 0.095 0.237 0.165
2 0.102 0.255 0.194 0.111 0.236 0.101
3 0.100 0.250 0.203 0.098 0.247 0.152
4 0.097 0.284 0.197 0.095 0.279 0.168
5 0.100 0.173 0.199 0.111 0.219 0.005
6 0.099 0.268 0.212 0.088 0.234 0.239
7 0.100 0.227 0.197 0.108 0.230 0.153
8 0.101 0.240 0.189 0.093 0.317 0.196
9 0.100 0.158 0.192 0.110 0.247 0.132
10 0.101 0.238 0.185 0.107 0.283 0.176
Mean 0.100 0.233 0.197 0.102 0.253 0.149
Best 0.100 0.250 0.203 0.098 0.247 0.152

According to Tables 2-5, the maximum errors corre-
sponding to the damaged elements are 0.017 and 0.026
for WOA and GA, respectively.

Adding noise to a problem makes errors in the ex-
perimental modal data; so there is no real case corre-
sponding to these data. Thus, WOA algorithm finds
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the case with its modal data having the least difference
with experimental modal data. This scenario is or is
not the exact answer (depending on the amount of the
noise, structure characteristics, and assumed scenario).

On the other hand, the best and the average values are
choices according to value of cost function. Therefore,
this is usual that some of the best values are not better
than the average.

Table 4
Damage severities of suspected damaged elements estimated by WOA for the third scenario of the 200-bar double layer grid.

No. Elements and damage severity
25 30 49 135 140 161 163 187

1 0.252 0.148 0.095 0.216 0.249 0.172 0.031 0.029
2 0.250 0.148 0.100 0.216 0.246 0.154 0.055 0.062
3 0.250 0.153 0.103 0.171 0.253 0.156 0.070 0.052
4 0.251 0.148 0.099 0.224 0.249 0.161 0.071 0.052
5 0.249 0.156 0.109 0.140 0.255 0.131 0.121 0.085
6 0.247 0.152 0.103 0.192 0.252 0.121 0.129 0.069
7 0.252 0.147 0.098 0.207 0.248 0.141 0.087 0.036
8 0.249 0.147 0.102 0.222 0.248 0.117 0.139 0.070
9 0.250 0.148 0.099 0.214 0.249 0.153 0.081 0.049
10 0.250 0.149 0.102 0.215 0.249 0.120 0.131 0.069
Mean 0.250 0.149 0.101 0.201 0.250 0.143 0.092 0.057
Best 0.250 0.148 0.099 0.214 0.249 0.153 0.081 0.049

Table 5
Damage severities of suspected damaged elements estimated by GA for the all scenarios of the 200-bar double layer grid.

Scenario Damage severity

1
Elements 38 82 171 195
Mean 0.260 0.200 0.319 0.249
Best 0.251 0.201 0.288 0.250

2
Elements 20 29 42 48 105 137
Mean 0.126 0.253 0.200 0.100 0.240 0.154
Best 0.104 0.249 0.197 0.104 0.251 0.149

3
Elements 25 30 49 135 140 161 163 187
Mean 0.272 0.154 0.105 0.193 0.275 0.140 0.110 0.065
Best 0.249 0.156 0.102 0.189 0.255 0.158 0.067 0.056

4.2. A 960-member Double-layer Grid

The second practiced double-layer truss included 263
joints and 960 members, as displayed in Fig. 6. This
structure was utilized by [36] to acquire the optimum
design of the structures. The material density was con-
sidered as 7860kg/m3 and the elasticity modulus was
equal to 2.04 × 1011N/m2. Cross-sectional area of all

elements was equal to 72.16cm2. The details of three
multiple damage scenarios are given in Table 6.

4.2.1. Results and Discussions

For all scenarios, EDS and NCE of all elements in noisy
condition are shown in the Figs. 7-9.

Table 6
Damage scenarios of the 960-member double layer grid.

Scenario Damaged elements Severity of damage

1 76, 125, 360, 512 0.05, 0.07, 0.05, 0.10

2 150, 252, 365, 452, 526, 879 0.05, 0.10, 0.22, 0.05, 0.10, 0.15

3 43, 134, 156, 288, 444, 620, 840, 902 0.10, 0.20, 0.05, 0.10, 0.05, 0.15, 0.15, 0.25
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Fig. 6. The 960-member double-layer grid.

Fig. 7. The results of 960-member double-layer grid for first scenario in noise-added condition. a) EDS. b)
NCE.
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Fig. 8. The results of 960-member double-layer grid for second scenario in noise-added condition. a) EDS. b)
NCE.

Fig. 9. The results of 960-member double-layer grid for third scenario in noise-added condition. a) EDS. b)
NCE.
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Tables 7-9 show damage severities of the suspected
damaged elements assessed by WOA algorithm within
ten runs. Moreover, Table 10 shows damage severities
of the elements estimated by GA algorithm.
Table 7
Damage severities of the suspected damaged elements assessed
by WOA for the first scenario of the 960-member double-layer
grid.

No. Elements and damage severity
76 125 360 512

1 0.040 0.072 0.045 0.119
2 0.052 0.069 0.051 0.096
3 0.055 0.063 0.060 0.077
4 0.048 0.070 0.052 0.099
5 0.065 0.070 0.067 0.099
6 0.060 0.087 0.055 0.173
7 0.058 0.070 0.058 0.102
8 0.042 0.072 0.045 0.109
9 0.059 0.073 0.061 0.110
10 0.052 0.067 0.050 0.093
Mean 0.053 0.071 0.054 0.108
Best 0.048 0.070 0.052 0.099

Table 8
Damage severities of the suspected damaged elements assessed
by WOA for the second scenario of the 960-member double-layer
grid.

No.
Elements and damage severity
150 252 365 452 526 879

1 0.050 0.105 0.222 0.066 0.110 0.149
2 0.061 0.095 0.207 0.070 0.091 0.148
3 0.055 0.091 0.215 0.006 0.088 0.152
4 0.050 0.099 0.210 0.055 0.093 0.151
5 0.033 0.095 0.235 0.028 0.094 0.152
6 0.053 0.090 0.216 0.001 0.093 0.154
7 0.048 0.100 0.217 0.057 0.095 0.150
8 0.051 0.099 0.224 0.050 0.100 0.150
9 0.042 0.103 0.240 0.005 0.108 0.153
10 0.052 0.112 0.219 0.146 0.116 0.145
Mean 0.049 0.099 0.220 0.049 0.099 0.150
Best 0.051 0.099 0.224 0.050 0.100 0.150

Table 9
Damage severities of the suspected damaged elements assessed by WOA for the third scenario of the 960-member double-layer grid.

No. Elements and damage severity
43 134 156 288 444 620 840 902

1 0.099 0.200 0.044 0.099 0.062 0.165 0.150 0.251
2 0.101 0.198 0.049 0.101 0.023 0.161 0.166 0.252
3 0.107 0.218 0.067 0.117 0.000 0.168 0.161 0.252
4 0.097 0.194 0.051 0.096 0.053 0.171 0.140 0.248
5 0.096 0.192 0.059 0.097 0.021 0.135 0.149 0.248
6 0.098 0.199 0.056 0.100 0.062 0.122 0.143 0.248
7 0.091 0.180 0.000 0.074 0.092 0.193 0.138 0.255
8 0.105 0.212 0.057 0.108 0.034 0.112 0.147 0.249
9 0.101 0.195 0.053 0.099 0.057 0.121 0.153 0.249
10 0.104 0.203 0.051 0.106 0.090 0.146 0.150 0.254
Mean 0.100 0.199 0.049 0.100 0.049 0.149 0.150 0.251
Best 0.097 0.194 0.051 0.096 0.053 0.171 0.140 0.248

Table 10
Damage severities of the suspected damaged elements assessed by GA for the all scenarios of the 960-member double-layer grid.

Scenario Damage severity

1
Elements 76 125 360 512
Mean 0.053 0.080 0.082 0.098
Best 0.055 0.069 0.050 0.082

2
Elements 150 252 365 452 526 879
Mean 0.073 0.101 0.219 0.048 0.100 0.151
Best 0.050 0.097 0.223 0.034 0.091 0.151

3
Elements 43 134 156 288 444 620 840 902
Mean 0.121 0.199 0.054 0.101 0.083 0.149 0.150 0.249
Best 0.099 0.209 0.054 0.106 0.041 0.141 0.153 0.250
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According to the Tables 7-10, the maximum errors
corresponding to the damaged elements are 0.021 and
0.033 for WOA and GA, respectively. The part (a) of
figs. 3-5 show that the EDS of the damaged elements
are less than that of the others in noisy condition and
they are found as really damaged elements. Parts (b)
of these Figures demonstrate that the NCE of some
healthy elements temporarily decreased and the real
damaged elements are not accurately found according
to the Figures.

5. Conclusions

In this paper, a two-stage approach based on DLV
(Damage Locating Vector) method and WOA (Whale
Optimization Algorithm) for damage identification of
large-scale double-layer truss structures was presented.
In the first stage, DLV method by using Exponential
Decreased Stress (EDS) according to stress of struc-
tural elements located the damaged elements. In the
second stage, WOA algorithm estimated damage sever-
ity of the potential damaged elements. Scenario studies
including two double-layer grid truss structures were
investigated by different multiple scenarios. The re-
sults of scenario studies obtained from EDS index and
WOA algorithm were compared to the results of NCE
(Normalized Cumulative Energy) and GA algorithm,
respectively. Although there were high numbers of
structural elements and low numbers of used mode
shapes, it was concluded that EDS and WOA are effi-
cient to locate and quantify the damaged elements in
noise-added condition. Furthermore, according to the
result of scenario studies, EDS requires lower number
of modes than NCE does. The errors in the computa-
tion of the damage severity were 0.021 and 0.033 con-
sidering eight first modes corresponding to WOA and
GA, respectively.
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