Effect of Hygrothermal Environmental Conditions on the Time-dependent Creep Response of Functionally Graded Magneto-electro-elastic Hollow Sphere

M. Saadatfar
Mechanical Engineering Department, University of Qom, Qom, Iran.

Abstract
In this paper, hygro-thermo-magneto-electro-elastic creep stress redistribution of a functionally graded magneto-electro-elastic (FGMEE) hollow sphere is examined. It is supposed that all material properties are a power-law function of radius. Temperature and moisture concentration functions are obtained analytically and then, a differential equation with creep strains is obtained using equations of electrostatic, magnetostatic and equilibrium. At first, ignoring the creep strains, a solution for the initial hygro-thermo-magneto-electroelastic stresses at zero time is achieved. Subsequently, creep strains are considered and creep stress rates are obtained. The Prandtl-Reuss equations and Norton’s law are taken for the creep analysis. Finally, time-dependent creep stresses as well as magnetic and potential field redistributions at any time are obtained using an iterative method. Results show that the radial stress, radial displacement, electric potential and magnetic potentials increase as time goes by at a decreasing rate. Also, the grading index and hygrothermal condition have more considerable effect on the radial stress after creep evolution rather than initial case. Thus, their effects must be considered in creep evolution analysis.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_r</td>
<td>Magnetic induction</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>Elastic coefficients</td>
</tr>
<tr>
<td>d_{11}</td>
<td>Magnetic coefficient</td>
</tr>
<tr>
<td>k_{ij}</td>
<td>Moisture diffusivity coefficient</td>
</tr>
<tr>
<td>m_1</td>
<td>Pyromagnetic coefficient</td>
</tr>
<tr>
<td>q_{1j}</td>
<td>Piezomagnetic coefficient</td>
</tr>
<tr>
<td>ψ</td>
<td>Magnetic potential</td>
</tr>
<tr>
<td>C_{ij0}</td>
<td>Temperature and moisture independent elastic coefficient</td>
</tr>
<tr>
<td>γ_i</td>
<td>Hygromagnetic coefficient</td>
</tr>
<tr>
<td>\tilde{c}_i</td>
<td>Creep strain rate</td>
</tr>
<tr>
<td>ζ</td>
<td>Hygrosopic stress coefficients</td>
</tr>
<tr>
<td>σ_e</td>
<td>Effective stress</td>
</tr>
<tr>
<td>α^*</td>
<td>Empirical material coefficient for temperature dependence</td>
</tr>
<tr>
<td>β_i</td>
<td>Moisture expansion coefficients</td>
</tr>
<tr>
<td>D_r</td>
<td>Electric displacement</td>
</tr>
<tr>
<td>ϵ_{1j}</td>
<td>Piezoelectric coefficient</td>
</tr>
<tr>
<td>k_T^*</td>
<td>Thermal conductivity coefficient</td>
</tr>
<tr>
<td>p_1</td>
<td>Pyroelectric coefficient</td>
</tr>
<tr>
<td>α_i</td>
<td>Thermal modulus coefficients</td>
</tr>
<tr>
<td>β_{i1}</td>
<td>Dielectric coefficient</td>
</tr>
<tr>
<td>β^*</td>
<td>Empirical material coefficient for moisture dependence</td>
</tr>
<tr>
<td>ϵ_{11}</td>
<td>Electromagnetic coefficient</td>
</tr>
<tr>
<td>ϵ_e</td>
<td>Effective creep strain rate</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ_i</td>
<td>Stresses</td>
</tr>
<tr>
<td>χ_1</td>
<td>Hygroelectric coefficient</td>
</tr>
<tr>
<td>ϕ</td>
<td>Electric potential</td>
</tr>
</tbody>
</table>

*Corresponding author: M. Saadatfar (Assistant Professor)
E-mail address: m.saadatfar@gmail.com
http://dx.doi.org/10.22084/jrstan.2019.18157.1080
ISSN: 2588-2597
1. Introduction

Magneto-electro-elastic (MEE) materials have simultaneous piezoelectric, piezomagnetic, and particularly magnetoelastic coupling effects. Owing to this multifunctional ability in sensing and actuating, they have found to have several applications in the area of aerospace structures, damage detection, structural health monitoring and energy harvesting [1]. In addition, due to the benefits of functionally graded materials (FGMs) [2, 3], FGMEE was suggested. It is feasible to increase displacements and decrease stresses in functionally graded actuators [4-6]. Given that these materials are usually used under various loadings and different environments, the analysis of the effects of moisture and temperature on their performances is of vital importance. Also, under severe conditions, these materials show obvious creep property in time as a result of their inherent viscoelastic property [7]. Consequently, the investigation of the time-dependent behavior of these structures under multiphysical conditions is vital.

For MEE spherical structure, the dynamic response of MEE hollow sphere was investigated by Wang and Ding [8, 9]. Transient thermal stress in a multilayered MEE hollow sphere was investigated by Ootao and Ishihara [10]. Chen et al. [11] presented a solution for the spherically anisotropic MEE hollow sphere problem. Saadatfar and Aghaie-Khafri [12] considered the response of a FGMEE sphere in a hygrothermal condition.

In the area of multiphysical analysis, several problems have been considered by researchers to discover the multiphysical behavior of intelligent structures. The coupled hygrothermal stress of laminated plates was studied by Smittakorn and Heyliger [13]. Besides, they [14] disclosed the effects of the hygro-thermo-electro-mechanical conditions on the response of composite plates. Using the finite element method, Raja et al. [15] studied the hygro-thermo-piezoelectric interactions in laminated plates and shells. Saadatfar and Aghaie-Khafri [16, 17] disclosed that the actuation and sensing authority of FGPM layers was widely affected by their inhomogeneity index under hygro-thermo-electro-mechanical loading. Later, Saadatfar [18] presented hygro-thermo-magneto-electro-elastic analysis of a finite hybrid FGM cylindrical shell with FGPM layers using differential quadrature method (DQM).

Some articles are available on creep behaviors in FGM and piezoelectric spheres. You and Ou [19] carried out creep investigation of hollow sphere with variable creep properties. Loghman and Shokouhi [20] investigated creep stresses in a hollow sphere using a long-term creep model. Loghman et al. [21, 22] conducted a time-dependent creep analysis of FGM spheres. Dai et al. [7] presented the creep analysis of a FGPM sphere subjected to thermo-electro-

2. Formulation of the Problem

A FGMEE thick-walled sphere which is radially polarized and magnetized is considered as shown in Fig. 1. The inner and outer radius are considered as a and b, respectively. Regarding spherically symmetric, magnetic and electric potentials, displacement, temperature and moisture concentration are the functions of radius. All material coefficients are assumed to be a simple power-law function of radius as: \(\xi(r) = \xi r^\beta \), \(\xi = c_{ij}, e_{ij}, q_{ij}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11} \), \(\eta = c_{ij}, e_{ij}, q_{ij}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11} \). Where, \(\xi \) indicate corresponding material coefficients and \(\beta \) is the grading parameter. \(c_{ij}, e_{ij}, q_{ij}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11}, \beta_{11} \) are the elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic, magnetic, pyroelectric, pyromagnetic, thermal expansion, thermal conductivity, moisture diffusivity, hygroelectric, hygromagnetic and moisture expansion coefficients, respectively.

\[
\begin{align*}
T_b, M_b, P_b, \varphi_b, \varphi_a, & \\
T_a, M_a, P_a, \varphi_a, \varphi_b, & \\
\end{align*}
\]

Fig. 1. FGMEE sphere.
2.1. Temperature and Moisture Concentration Problem

In an uncoupled hygrothermal analysis, the temperature and moisture concentration functions are obtained independently by solving heat conduction and moisture diffusion equations. The heat conduction and moisture diffusion equations in axisymmetric and steady-state condition are presented as [27]:

\[
\begin{align*}
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 k^T \frac{\partial T}{\partial r} \right) &= 0, \quad (1a) \\
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 k^M \frac{\partial M}{\partial r} \right) &= 0, \quad (1b)
\end{align*}
\]

Integrating these equations twice yields:

\[
T(r) = W_1 r^{-\beta - 1} + W_2, \\
M(r) = S_1 r^{-\beta - 1} + S_2.
\] \hspace{1cm} (2)

The general hygrothermal boundary conditions can be written as:

\[
C_{11} T'(a) + C_{12} T(a) = f_1, \\
C_{21} T'(b) + C_{22} T(b) = f_2,
\]

where \(C_{ij}\) is the Robin-type boundary condition coefficients and \(f_1\) and \(f_2\) are known constants on the inner and outer radius. Using these boundary conditions and the constants \(W_i\), one can write [28]:

\[
\begin{align*}
W_1 &= \frac{C_{22} f_1 - C_{12} f_2}{C_{12}(\beta + 1)C_{21} b^-(\beta + 2) - C_{22} b^-(\beta + 1) - C_{22}((\beta + 1)C_{11} a^{(\beta + 2)} - C_{12} a^{-(\beta + 1)})}, \\
W_2 &= \frac{f_1((\beta + 1)C_{21} b^-(\beta + 2) - C_{22} b^-(\beta + 1)) - f_2((\beta + 1)C_{11} a^{(\beta + 2)} - C_{12} a^{-(\beta + 1)})}{C_{12}(\beta + 1)C_{21} b^-(\beta + 2) - C_{22} b^-(\beta + 1) - C_{22}((\beta + 1)C_{11} a^{(\beta + 2)} - C_{12} a^{-(\beta + 1)})},
\end{align*}
\]

The constants \(S_i\) can be obtained in the same way for general hygrothermal boundary conditions. In this study, the moisture concentration and temperature inside and outside of the sphere are taken to be \(M_a, M_b, T_a\) and \(T_b\), respectively. Thus, the constants can be obtained as:

\[
\begin{align*}
W_1 &= \frac{T_a - T_b}{a^{-(\beta + 1)} - b^{-(\beta + 1)}}, \quad (5a) \\
W_2 &= \frac{-T_a b^{-(\beta + 1)} + T_b a^{-(\beta + 1)}}{a^{-(\beta + 1)} - b^{-(\beta + 1)}}, \\
S_1 &= \frac{M_a - M_b}{a^{-(\beta + 1)} - b^{-(\beta + 1)}}, \\
S_2 &= \frac{-M_a b^{-(\beta + 1)} + M_b a^{-(\beta + 1)}}{a^{-(\beta + 1)} - b^{-(\beta + 1)}}. \quad (5b)
\end{align*}
\]

2.2. Basic Equations of the Problem

It is assumed that total strains are the sum of hygrothermal, electric, magnetic, elastic and creep strains. Therefore, the stress-strain relation can be expressed as:

\[
\sigma_r = c_{11} \frac{\partial u}{\partial r} + 2c_{12} \frac{u}{r} + c_{11} \frac{\partial \phi}{\partial r} + q_{11} \frac{\partial \psi}{\partial r} - \lambda_1 T - \zeta_1 M - c_{11} \varepsilon_{rr}^c - 2c_{12} \varepsilon_{\theta \theta}^c, \quad (6a)
\]

\[
\sigma_\theta = c_{12} \frac{\partial u}{\partial r} + (c_{22} + c_{23}) \frac{u}{r} + c_{12} \frac{\partial \phi}{\partial r} + q_{12} \frac{\partial \psi}{\partial r} - \lambda_2 T - \zeta_2 M - c_{12} \varepsilon_{rr}^c - (c_{22} + c_{23}) \varepsilon_{\theta \theta}^c, \quad (6b)
\]

\[
D_r = c_{11} \frac{\partial u}{\partial r} + 2c_{12} \frac{u}{r} - \beta_1 \frac{\partial \phi}{\partial r} - \beta_1 \frac{\partial \omega}{\partial r} + q_{11} \frac{\partial \psi}{\partial r} + p_i T + \lambda_1 M - \varepsilon_{11} \varepsilon^e_{rr} - 2c_{12} \varepsilon^e_{\theta \theta}, \quad (6c)
\]

\[
B_r = q_{11} \frac{\partial u}{\partial r} + 2q_{12} \frac{u}{r} - \varepsilon_{11} \frac{\partial \phi}{\partial r} - d_{11} \frac{\partial \psi}{\partial r} + m_1 T + \gamma_1 M - q_{11} \varepsilon^e_{rr} - 2q_{12} \varepsilon^e_{\theta \theta} \quad (6d)
\]

where \(\sigma_i(r) (i = r, \theta), \phi, \psi, D_r \) and \(B_r\) are components of stress, electric and magnetic potentials, electric displacement and magnetic induction, respectively. Also, we have:

\[
\begin{align*}
\lambda_1 &= c_{11} \alpha_r + 2c_{12} \alpha_\theta, \quad (7a)
\lambda_2 &= c_{12} \alpha_r + (c_{22} + c_{23}) \alpha_\theta, \quad (7b)
\zeta_1 &= c_{11} \beta_r + 2c_{12} \beta_\theta, \quad (7c)
\zeta_2 &= c_{12} \beta_r + (c_{22} + c_{23}) \beta_\theta, \quad (7d)
\end{align*}
\]

Without body forces, the equation of equilibrium is:

\[
\frac{\partial \sigma_r}{\partial r} + 2\frac{(\sigma_r - \sigma_\theta)}{r} = 0. \quad (8)
\]

The electrostatic and magnetostatic equations, without electric charge and electric current densities, are:

\[
\begin{align*}
\frac{\partial D_r}{\partial r} + 2\frac{D_r}{r} &= 0, \quad (9a) \\
\frac{\partial B_r}{\partial r} + 2\frac{B_r}{r} &= 0. \quad (9b)
\end{align*}
\]

The boundary conditions are assumed as follow:
\[
\begin{align*}
\sigma_r \bigg|_{r=a} &= -p_a, \quad \sigma_r \bigg|_{r=b} = -p_b, \\
\phi \bigg|_{r=a} &= \phi_a, \quad \phi \bigg|_{r=b} = \phi_b, \\
\psi \bigg|_{r=a} &= \psi_a, \quad \psi \bigg|_{r=b} = \psi_b.
\end{align*}
\] (10)

Solving Eqs. (9), yields:
\[
\begin{align*}
D_r &= \frac{A_1}{r^2}, \quad (11a) \\
B_r &= \frac{A_2}{r^2}, \quad (11b)
\end{align*}
\]

Where, \(A_1\) and \(A_2\) are unknown constants. Substituting Eqs. (11) into Eqs. (6c) and (6d), yields:
\[
\begin{align*}
\frac{\partial \phi(r)}{\partial r} &= \frac{1}{\beta_{11}} \left(\epsilon_{11} \frac{\partial u}{\partial r} + 2\epsilon_{12} \frac{u}{r} - \epsilon_{11} \frac{\partial \phi}{\partial r} - \frac{A_1}{r^2} + p_1 T + \chi_1 M - \epsilon_{11} e_{rr}^c - 2\epsilon_{12} e_{\theta\theta}^c \right) \quad (12a) \\
\frac{\partial \psi(r)}{\partial r} &= \frac{1}{d_{11}} \left(q_{11} \frac{\partial u}{\partial r} + 2q_{12} \frac{u}{r} - \epsilon_{11} \frac{\partial \psi}{\partial r} - \frac{A_2}{r^2} + m_1 T + \gamma_1 M - q_{11} e_{rr}^c - 2q_{12} e_{\theta\theta}^c \right) \quad (12b)
\end{align*}
\]

These equations can be rearranged as:
\[
\begin{align*}
\frac{\partial \phi(r)}{\partial r} &= \left(L_1 \frac{\partial u}{\partial r} + 2L_2 \frac{u}{r} + L_3 A_2 \frac{A_2}{r^2 + \beta} + L_4 T + L_6 M - L_5 A_1 \frac{A_1}{r^2 + \beta} - L_1 e_{rr}^c - 2L_2 e_{\theta\theta}^c \right) \quad (13a) \\
\frac{\partial \psi(r)}{\partial r} &= \left(P_1 \frac{\partial u}{\partial r} + 2P_2 \frac{u}{r} + P_3 A_1 \frac{A_1}{r^2 + \beta} + P_4 T + P_6 M - P_5 A_2 \frac{A_2}{r^2 + \beta} - P_1 e_{rr}^c - 2P_2 e_{\theta\theta}^c \right) \quad (13b)
\end{align*}
\]

where,
\[
\begin{align*}
L_1 &= \frac{\epsilon_{11}d_{11} - \epsilon_{11}q_{11}}{\beta_{11}d_{11} - \epsilon_{11}^2}, \\
L_2 &= \frac{\epsilon_{12}d_{11} - \epsilon_{12}q_{12}}{\beta_{11}d_{11} - \epsilon_{11}^2}, \\
L_3 &= \frac{\epsilon_{11}}{\beta_{11}d_{11} - \epsilon_{11}^2}, \\
L_4 &= \frac{\tilde{d}_{11}m_{1} - \epsilon_{11}m_{1}}{\beta_{11}d_{11} - \epsilon_{11}^2}, \\
L_5 &= \frac{\tilde{d}_{11}}{\beta_{11}d_{11} - \epsilon_{11}^2}, \\
L_6 &= \frac{\tilde{d}_{11}C_{1} - \epsilon_{11}C_{1}}{\beta_{11}d_{11} - \epsilon_{11}^2}.
\end{align*}
\]

Substituting Eq. (13) into Eqs. (6a) and (6b) gives:
\[
\begin{align*}
\sigma_r &= C_1 r^\alpha \frac{\partial u}{\partial r} + 2C_2 r^\beta u + C_3 A_2 \frac{A_2}{r^2 + \beta} + C_1 A_1 \frac{A_1}{r^2 + \beta} + C_5 \gamma_1 T + C_6 \gamma_1 M \\
&- \tilde{\lambda}_1 r^\alpha T - \tilde{\lambda}_1 r^\beta M - C_1 r^\beta \epsilon_{rr}^c - 2C_2 r^\beta \epsilon_{\theta\theta}^c. \quad (15a) \\
\sigma_{\theta} &= E_1 r^\alpha \frac{\partial u}{\partial r} + 2E_2 r^\beta u + E_2 A_2 \frac{A_2}{r^2 + \beta} + E_3 A_1 \frac{A_1}{r^2 + \beta} + E_5 \gamma_1 T + E_6 \gamma_1 M \\
&- \tilde{\lambda}_2 r^\alpha T - \tilde{\lambda}_2 r^\beta M - E_1 r^\beta \epsilon_{rr}^c - 2E_2 r^\beta \epsilon_{\theta\theta}^c. \quad (15b)
\end{align*}
\]

where
\[
\begin{align*}
C_1 &= \tilde{c}_{11} + \tilde{c}_{11}L_1 + \tilde{q}_{11}P_1, \\
C_2 &= \tilde{c}_{12} + \tilde{e}_{11}L_2 + \tilde{q}_{11}P_2, \\
C_3 &= \tilde{c}_{11}L_3 - \tilde{q}_{11}P_3, \\
C_4 &= -\tilde{c}_{11}L_5 + \tilde{q}_{11}P_3, \\
C_5 &= -\tilde{c}_{11}L_4 + \tilde{q}_{11}P_1, \\
C_6 &= \tilde{c}_{11}L_6 + \tilde{q}_{11}P_6.
\end{align*}
\]

Substituting Eqs. (15) into Eq. (8), the equilibrium equation is now can be expressed as:
\[
\begin{align*}
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} M_2 u &= M_3 r^{\beta-1} T + M_4 \frac{T}{r} \\
&+ (-M_5 + M_6 r^\beta) \frac{\partial T}{\partial r} + M_7 A_2 \frac{A_2}{r^2 + \beta} + M_8 A_1 \frac{A_1}{r^2 + \beta} \\
&+ M_9 r^{\beta-1} M + M_{10} \frac{M}{r} + (-M_{11} + M_{12} r^\beta) \frac{\partial M}{\partial r} \\
&+ M_{13} r^{-1} \epsilon_{rr}^c + \frac{\partial \epsilon_{rr}^c}{\partial r} + 2M_{14} r^{-1} \epsilon_{\theta\theta}^c + 2M_{15} \frac{\partial \epsilon_{\theta\theta}^c}{\partial r}. \quad (17)
\end{align*}
\]
where,

\[
\begin{align*}
M_1 &= C_1(\beta + 2) + 2C_2 - 2E_1/
M_2 &= 2C_2(\beta + 1) - 4E_2/
M_3 &= 2(\lambda_1(\beta - 2) + \lambda_2)/
M_4 &= 2E_3 - C_5(\beta + 2)/
M_5 &= C_5/
M_6 &= \lambda_1/
M_7 &= 2E_4/
M_8 &= 2E_4/
M_9 &= 2(\hat{\lambda}_1(\beta - 2) + \hat{\lambda}_2)/
M_{10} &= 2E_6 - C_6(\beta + 2)/
M_{11} &= C_6/
M_{12} &= \hat{\lambda}/
M_{13} &= C_1(\beta + 2) - 2E_1/
M_{14} &= C_2(\beta + 2) - 2E_2/
M_{15} &= C_2/
\end{align*}
\]

3. Solution of the Equations

3.1. Initial Stress Analysis

To determine initial stresses, ignoring creep strains in Eq. (17), the following differential equation was obtained using Eqs. (2) in to Eq. (17):

\[
\begin{align*}
\frac{\partial^2 u}{\partial r^2} + \frac{M_1}{r} \frac{\partial u}{\partial r} + \frac{M_2}{r^2} u &= (M_3W_2 + M_9S_2)r^{-1}
+ (M_4W_2 + M_{10}S_2)r^{-1} + [W_1(M_4 + M_9(\beta + 1))
+ S_1(M_{10} + M_{11}(\beta + 1))]r^{-2} + [W_1(M_3 - M_9(\beta + 1))
+ S_1(M_9 - M_{12}(\beta + 1))]r^{-2} + M_7\frac{A_2}{r^{3+\beta}} + M_8\frac{A_1}{r^{3+\beta}}.
\end{align*}
\] (19)

The solution of Eq. (19) may be considered as:

\[u = u_g + u_p.\] (20)

The homogeneous solution of the Eq. (20) can be found as:

\[u_g = B_1r^{m_1} + B_2r^{m_2},\] (21)

where \(B_1\) and \(B_2\) are constants and we have:

\[m_{1,2} = \frac{1}{2} \left(- (M_1 - 1) \pm \sqrt{(M_1 - 1)^2 - 4M_2} \right).\] (22)

In order to use numerical values, real, distinct roots will only be considered for every value of \(\beta\) [12]. Therefore, the stress expressions will be written using Eq. (22). Here, different magnitudes of \(\beta\) are used to discover its effect on the response of FGMEE thick-walled sphere. However, these magnitudes of \(\beta\) are not necessarily related to a specific material. The particular solution of Eq. (19) can be considered as:

\[u_p = B_3r + B_4r^{\beta+1} \quad + B_5r^{-\beta} \quad + B_6\] (23)

where,

\[B_3 = \frac{M_4W_2 + M_{10}S_2}{M_1 + M_2},\]
\[B_4 = \frac{M_4W_2 + M_9S_2}{M_2 + (\beta + 1)(\beta + M_1)},\]
\[B_5 = \frac{W_1(M_4 + M_5(\beta + 1) + S_1(M_{10} + M_{11}(\beta + 1))}{\beta(\beta + 1) - \beta M_1 + M_2},\]
\[B_6 = \frac{W_1(M_3 - M_9(\beta + 1) + S_1(M_9 - M_{12}(\beta + 1))}{M_2},\]
\[B_7 = \frac{M_7}{(\beta + 1)(\beta + 2 - M_1) + M_2},\]
\[B_8 = \frac{M_8}{(\beta + 1)(\beta + 2 - M_1) + M_2}.
\]

Thus, the complete solution is:

\[u = u + u_p = B_1r^{m_1} + B_2r^{m_2} + B_3r + B_4r^{\beta+1} + B_5r^{-\beta} + B_6 + B_7A_2r^{-(\beta+1)} + B_8A_1r^{-(\beta+2)}\] (25)

When \(u(r)\) is known, Eq. (13a) can be expressed as:

\[
\begin{align*}
\frac{\partial \phi}{\partial r} &= \left(L_1(B_1m_1r^{m_1-1} + B_2mr^{m_2-1} + B_3 + B_4(\beta + 1)r^{\beta} - B_5r^{-(\beta+1)} - (\beta + 1)B_8A_1r^{-(\beta+2)}
- (\beta + 1)B_7A_2r^{(\beta+2)}) + 2L_2\right)\frac{B_1r^{m_1-1} + B_2r^{m_2-1} + B_3}{r} + B_4r^{\beta} \quad + B_5r^{-(\beta+1)} \quad + B_8A_1r^{-(\beta+2)} + B_6
+ L_3\frac{A_2}{r^{3+\beta}} + L_5\frac{A_1}{r^{3+\beta}} + L_4(W_1r^{-(\beta+1)} + W_2)
+ L_6(S_1r^{-(\beta+1)} + S_2).
\end{align*}\] (26)
Integrating Eq. (26), we have:
\[
\phi(r) = \left(L_1 \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 r^\beta + B_4 r^\beta \right) + B_5 r^{-\beta} - B_6 A_1 r^{-(\beta+1)} + B_7 A_2 r^{-(\beta+1)} \right) \\
+ 2 L_2 \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 r^\beta + B_4 r^\beta \right) + B_6 r^{-\beta} - B_7 A_1 r^{-(\beta+1)} - B_8 A_2 r^{-(\beta+1)} \\
+ B_9 \ln(r) - L_3 A_2 \left(\frac{A_1 (\beta+1)}{A_2} \right) r^{-(\beta+1)} \\
+ L_5 A_1 (\beta+1) r^{-(\beta+1)} + L_4 \left(\frac{W_1 r^{-\beta} + W_2 r^\beta}{r^\beta} \right) \\
+ L_6 \left(- \frac{S_1}{\beta} r^{-\beta} + S_2 r^\beta \right) + Z_1. \tag{27}
\]

Where \(Z_1 \) is a constant. Likewise, \(\psi(r) \) can be written as:
\[
\psi(r) = \left(P_1 (B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 r^{\beta-1} + B_4 r^\beta) + P_2 \left(\frac{B_1}{m_1} r^{m_1-1} + \frac{B_2}{m_2} r^{m_2-1} + B_3 r^{\beta-1} + B_4 r^\beta \right) + B_5 r^{-\beta} - B_6 A_1 r^{-(\beta+1)} + B_7 A_2 r^{-(\beta+1)} \right) \\
+ P_3 \left(\frac{A_1 (\beta+1)}{A_2} \right) r^{-(\beta+1)} - P_4 A_1 (\beta+1) r^{-(\beta+1)} \\
+ P_4 \left(\frac{- W_1}{\beta} r^{-\beta} + W_2 r^\beta \right) \\
+ P_6 \left(- \frac{S_1}{\beta} r^{-\beta} + S_2 r^\beta \right) + Z_2. \tag{28}
\]

Where \(Z_2 \) is an unknown constant. Substituting Eq. (2), Eq. (23), Eq. (27) and (28) into Eq. (15), the initial radial and hoop stresses of the thick-walled FG-MEE sphere were obtained as:
\[
\sigma_r = C_1 r^\beta \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 + B_4 (\beta + 1) r^\beta \right) \\
- B_5 r^{-\beta-1} - (\beta + 1) B_6 A_1 r^{-\beta-2} - (\beta + 1) B_7 A_2 r^{-\beta-2} \\
+ 2 C_2 r^\beta \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 + B_4 r^\beta + B_5 r^{-\beta+1} \right) \\
+ B_6 A_1 r^{-(\beta+2)} + B_7 A_2 r^{-(\beta+2)} + B_8 A_3 r^{-(\beta+2)} + B_9 r^{-\beta-1} \\
+ C_3 A_2 r^{-\beta} + C_4 A_1 r^{-\beta} + (C_5 r^\beta - \lambda_{1} r^2 \beta^2) (W_1 r^{-(\beta+1)} + W_2) \\
+ (C_6 r^\beta - \lambda_{2} r^2 \beta^2) (S_1 r^{-(\beta+1)} + S_2) \tag{29}
\]
\[
\sigma_\theta = E_1 r^\beta \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 + B_4 (\beta + 1) r^\beta \right) \\
- B_5 r^{-\beta-1} - (\beta + 1) B_6 A_1 r^{-\beta-2} - (\beta + 1) B_7 A_2 r^{-\beta-2} \\
+ 2 E_2 r^\beta \left(B_1 m_1 r^{m_1-1} + B_2 m_2 r^{m_2-1} + B_3 + B_4 r^\beta + B_5 r^{-\beta+1} \right) \\
+ B_6 A_1 r^{-(\beta+2)} + B_7 A_2 r^{-(\beta+2)} + B_8 A_3 r^{-(\beta+2)} + B_9 r^{-\beta-1} \\
+ E_3 A_2 r^{-\beta} + E_4 A_1 r^{-\beta} + (E_5 r^\beta - \lambda_{2} r^2 \beta^2) (W_1 r^{-(\beta+1)} + W_2) \\
+ (E_6 r^\beta - \lambda_{2} r^2 \beta^2) (S_1 r^{-(\beta+1)} + S_2). \tag{30}
\]

Employing the electro-magneto-mechanical boundary conditions, the unknown constants \(A_1, A_2, B_1, B_2, Z_1 \) and \(Z_2 \) can be found by solving the system of six linear algebraic equations which can be expressed as:
\[
X \begin{bmatrix} B_1 & B_2 & A_1 & A_2 & Z_1 & Z_2 \end{bmatrix}^T = F, \tag{31}
\]

Where \(X \) and \(F \) are known matrix. Now, the initial stresses, radial displacement, electric and magnetic potential are known at zero time.

3.2. Time-dependent Creep Analysis

Assuming the temperature and moisture concentration to be constant-time, differentiation Eq. (17) with respect to time gives:
\[
\frac{\partial^2 u}{\partial t^2} + \frac{1}{r} M_1 \frac{\partial u}{\partial r} + \frac{1}{r^2} M_2 \frac{\partial u}{\partial r} + M_3 r^{-1} \varepsilon_{rr} + \frac{\partial \varepsilon_{rr}}{\partial r} + 2 M_{14} r^{-1} \varepsilon_{\theta r} + 2 M_{15} \frac{\partial \varepsilon_{\theta r}}{\partial r} = 0 \tag{32}
\]

Creep rates can be related to the stresses by the Prandtl-Reuss equations as [25, 29]:
\[
\varepsilon_{rr}^c = \frac{\varepsilon_c}{\sigma_c} (\sigma_r - 0.5(\sigma_\theta + \sigma_\phi)) \\
\varepsilon_{\theta r}^c = \frac{\varepsilon_c}{\sigma_c} (\sigma_\theta - 0.5(\sigma_r + \sigma_\phi)) \tag{33}
\]
\[
\varepsilon_{\phi r}^c = \frac{\varepsilon_c}{\sigma_c} (\sigma_\phi - 0.5(\sigma_r + \sigma_\theta))
\]

Where, \(\varepsilon_i^c (i = r, \theta, \phi) \) is the creep strain rate, \(\varepsilon_c^c \) is the effective creep strain rate and \(\sigma_c \) is the effective stress. The Norton’s law is considered as the creep constitutive model in the following form [25, 30]:
\[
\varepsilon_c^c = B(r) \sigma_c^n(r) \tag{34}
\]

Where \(B(r) \) and \(n(r) \) are material creep parameters. They are considered as function of radius as [21, 31]:
\[
B(r) = b_0 r^{b_1}, n(r) = n_0 \tag{35}
\]
Where \(b_0 \), \(b_1 \) and \(n_0 \) are constants. Considering symmetry of the problem and substituting Eq. (35) into Eq. (33), gives:

\[
\varepsilon^\circ_r = B(r)\sigma_e^{n_0-1}(\sigma_\theta - \sigma_r)
\]
\[
\varepsilon^\circ_\theta = \frac{B(r)}{2}\sigma_e^{n_0-1}(\sigma_\theta - \sigma_r)
\]

(36)

The Von Mises equivalent stress is considered as:

\[
\sigma_e = \frac{1}{\sqrt{2}} \sqrt{(\sigma_\theta - \sigma_r)^2 + (\sigma_\theta - \sigma_\phi)^2 + (\sigma_\phi - \sigma_r)^2}
\]

\[
= |\sigma_\theta - \sigma_r|
\]

(37)

Using Eq. (37), Eq. (36) yields:

\[
\varepsilon^\circ_r = -B(r)\sigma_e^{n_0}
\]
\[
\varepsilon^\circ_\theta = \frac{B(r)}{2}\sigma_e^{n_0}
\]

(38)

Substituting Eq. (38) into Eq. (32), gives:

\[
\frac{\partial^2 \hat{u}}{\partial \tau^2} + \frac{1}{r} M_1 \frac{\partial \hat{u}}{\partial r} + \frac{1}{r^2} M_2 \hat{u} = \frac{M_7}{r^{m+\beta}} + M_8 \frac{\hat{A}_2}{r^{m+\beta}} + b_0 r^{b_1 - 1} \sigma_e^{n_0} (M_{14} + M_{15} b_1)
\]

(39)

Substituting Eq. (38) into Eq. (42), gives:

\[
\frac{\partial \hat{u}}{\partial r} = D_1 r^{m_1} + D_2 r^{m_2} + G_{11} r^{m_1} + G_{21} r^{m_2}
\]

\[
+ B_8 r^{-(\beta+1)} \hat{A}_1 + B_7 r^{-(\beta+1)} \hat{A}_2
\]

(40)

Using a similar method as in previous section, the solution can be expressed as:

\[
\frac{\partial \phi}{\partial r} = \frac{L_1}{r} \frac{\partial \hat{u}}{\partial r} + L_2 \frac{\hat{u}}{r} - L_3 \frac{\hat{A}_1}{r^{m+\beta}} + L_4 \frac{\hat{A}_2}{r^{m+\beta}} - L_1 \varepsilon^\circ_{rr} - 2L_2 \varepsilon^\circ_{\theta \theta}
\]

(41)

Differentiation Eq. (15) and Eq. (13) with respect to time yields:

\[
\frac{\partial \hat{u}}{\partial r} = P_1 \frac{\hat{u}}{r} + P_2 \frac{\hat{u}}{r} + P_3 \frac{\hat{A}_1}{r^{m+\beta}} - P_4 \frac{\hat{A}_2}{r^{m+\beta}} - P_5 \varepsilon^\circ_{rr} - 2P_6 \varepsilon^\circ_{\theta \theta}
\]

(42)

Substituting Eq. (40) in Eq. (42) gives:

\[
\sigma_r = D_1 ((m_1 C_1 + 2C_2) r^{\beta + m_1-1}) + D_2 ((m_2 C_1 + 2C_2) r^{\beta + m_2-1}) + (B_8 (2C_2 - C_1 (1 + \beta)) + C_4) \frac{\hat{A}_1}{r^2}
\]

\[
+ (B_7 (2C_2 - C_1 (1 + \beta)) + C_3) \frac{\hat{A}_2}{r^2} + C_1 r^\beta \left(\frac{\partial G_{11}}{\partial r} r^{m_1} + G_{11} m_1 r^{m_1-1} + \frac{\partial G_{21}}{\partial r} r^{m_2} + G_{21} m_2 r^{m_2-1} \right)
\]

(43a)

\[
\sigma_\theta = D_1 ((m_1 E_1 + 2E_2) r^{\beta + m_1-1}) + D_2 ((m_2 E_1 + 2E_2) r^{\beta + m_2-1}) + (B_8 (2E_2 - E_1 (1 + \beta)) + E_4) \frac{\hat{A}_1}{r^2}
\]

\[
+ (B_7 (2E_2 - E_1 (1 + \beta)) + E_3) \frac{\hat{A}_2}{r^2} + E_1 r^\beta \left(\frac{\partial G_{11}}{\partial r} r^{m_1} + G_{11} m_1 r^{m_1-1} + \frac{\partial G_{21}}{\partial r} r^{m_2} + G_{21} m_2 r^{m_2-1} \right)
\]

(43b)
\[\dot{\phi} = D_1 r^{m_1} \left(L_1 + \frac{2L_2}{m_1} \right) + D_2 r^{m_2} \left(L_1 + \frac{2L_2}{m_2} \right) - (B_8(2L_2 - (1 + \beta)L_1) - L_3) \frac{r^{-\beta(1+1)}}{\beta(1+1)} \dot{A}_1 \]

\[- (B_r(2L_2 - L_1(1 + \beta)) + L_3) \frac{r^{-\beta(1+1)}}{\beta(1+1)} \dot{A}_2 + \int \left(L_1 \left(\frac{\partial G_{11}}{\partial r} r^{m_1} + G_{11} m_1 r^{m_1-1} \right) \right) \]

\[\dot{\psi} = D_1 r^{m_1} \left(P_1 + \frac{2P_2}{m_1} \right) + D_2 r^{m_2} \left(P_1 + \frac{2P_2}{m_2} \right) - (B_8(2P_2 - P_1(1 + \beta)L + P_3) \frac{r^{-\beta(1+1)}}{\beta(1+1)} \dot{A}_1 \]

\[- (B_r(2P_2 - P_1(1 + \beta)) - L_3) \frac{r^{-\beta(1+1)}}{\beta(1+1)} \dot{A}_2 + \int \left(P_1 \left(\frac{\partial G_{11}}{\partial r} r^{m_1} + G_{11} m_1 r^{m_1-1} \right) \right) \]

\[+ \partial G_{21} r^{m_2} + G_{21} m_2 r^{m_2-1} \right) + 2L_2(+G_{11} r^{m_1-1} + G_{21} r^{m_2-1}) + (L_1 - L_2) h_0 b^1 \sigma_v^0 \right) \right) dr + J_1 \] (43c)

\[+ \partial G_{21} r^{m_2} + G_{21} m_2 r^{m_2-1} \right) + 2P_2(+G_{11} r^{m_1-1} + G_{21} r^{m_2-1}) + (P_1 - P_2) h_0 b^1 \sigma_v^0 \right) \right) dr + J_2 \] (43d)

The six unknown constants can be achieved using the boundary conditions. The internal and external mechanical pressure and the electric and magnetic potential of the sphere do not vary in time. Thus, we have:

\[\dot{\sigma} \bigg|_{r=a} = 0, \quad \dot{\sigma} \bigg|_{r=b} = 0, \]

\[\dot{\phi} \bigg|_{r=a} = 0, \quad \dot{\phi} \bigg|_{r=b} = 0, \] (44)

\[\dot{\psi} \bigg|_{r=a} = 0, \quad \dot{\psi} \bigg|_{r=b} = 0, \]

The resultant system of linear equations can be solved in the same as the previous section. To achieve the history of stresses and the electric and magnetic potential through creep progress, the stress rates and the gradient of electric and magnetic potential rate are needed. Firstly, a suitable time increment is selected for timing steps \((dt^{(i)})\). The total time is taken as the sum of timing steps. Thus, for the \(i\)th time increment, the total time is:

\[t_i = \sum_{k=0}^{i} dt^{(k)} \] (45)

For the next timing steps, the radial and circumferential stresses as well as electric and magnetic potential distributions for the previous step are available, and then, the radial and circumferential stress rates are obtained from Eq. (43). Finally, the creep stress and electric and magnetic potential distribution can be found using an iterative method as:

\[\mathbf{R}^{(i)}(r, t_i) = \mathbf{R}^{(i-1)}(r, t_{i-1}) + \mathbf{R}^{(i-1)}(r, t_{i-1}) dt^{(i)}, \]

\[\mathbf{R} = \sigma_r, \sigma_r, \psi, \phi \]

4. Numerical Results and Discussions

Material coefficients for the FGMEE are used as expressed in Table 1 [12, 25]. The interior and exterior radius of the sphere is considered as \(a = 0.1m\) and \(b = 0.13m\), respectively. The following non-dimensional parameters are used:

\[R = \frac{r - a}{b - a}, \quad u^* = \frac{u}{a}, \quad \sigma_{r*} = \frac{\sigma_r}{P_a}, \quad (i = r, \theta), \]

\[\phi^* = \sqrt{\frac{c_{11}}{c_{11}}}, \quad \psi^* = \sqrt{\frac{d_{11}}{c_{11}}} b. \] (47)

For the first case, the creep evolution through the time is investigated. The hygro-thermo-magneto-electro-mechanical boundary condition is considered as:

\[P_a = 10MPa, \quad \phi_a = 0, \quad \phi_b = 6000, \quad \psi_a = 0, \quad \psi_b = 0, \quad T_a = 0, \quad T_b = 100, \quad M_a = 0, \quad M_b = 2. \] (48)

Fig. 2 shows the creep evolution of hollow FGMEE sphere under multiphysical environmental condition and loading. In this analysis, inhomogeneity index \(\beta = 2\) and time increment \(dt = 1 \times 10^6s\) is used. As can be seen, radial stress and electric and magnetic potential are time-constant in the inner and outer radii, which satisfies the constant boundary conditions. Regardless of the magnitude, the changes in the rate of stresses, electric and magnetic potentials and displacement, become less significant after 6 \(\times 10^5s\) and reaches an approximately steady state after 8 \(\times 10^8s\). According to Figs. 2a, 2e and 2f, the absolute magnitude of radial stress and the electric and magnetic potentials increases with the time at a decreasing rate. From Fig. 2b, it can be observed that the positive hoop stress decreases in time in the inner radius and increases in time in the outer radius. The increases in tensile hoop stress should be considered in design progress as it is
the circumferential stress rather than the radial stress which causes failure of the elastic hollow spheres [32, 33].

Fig. 2c shows that the equivalent stress decreases in time in the internal radius, while it exhibits a reverse behavior in the outer radius. Fig. 2d reveals that outward maximum radial displacement is in the inner radii and it decreases smoothly towards the outer radii. Also, the displacement increases at a decreasing rate over time.

In the next case, the effect of inhomogeneity index on the initial and creep behavior of FGMEE thick-walled sphere is revealed. \(T_b = 50 \) and other boundary conditions are assumed as those of the previous case. Fig. 3 shows the results for different inhomogeneity indexes at initial state of the problem and after \(6 \times 10^8 \)s.

![Graphs showing stress and displacement histories](image-url)
<table>
<thead>
<tr>
<th>Material constants</th>
<th>c_{11} (GPa)</th>
<th>c_{12} (GPa)</th>
<th>c_{23} (GPa)</th>
<th>c_{22} (GPa)</th>
<th>e_{11} (C/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>120</td>
<td>120</td>
<td>218</td>
<td>7.5</td>
<td>11</td>
</tr>
<tr>
<td>e_{12} (C/m2)</td>
<td>α_r (1/K)</td>
<td>α_p (1/K)</td>
<td>γ_{11} (N/Am)</td>
<td>γ_{12} (N/Am)</td>
<td></td>
</tr>
<tr>
<td>-2.5</td>
<td>6×10^{-6}</td>
<td>15×10^{-6}</td>
<td>345</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>β_{11} (C2/Nm2)</td>
<td>d_{11} (Ns/cm2)</td>
<td>ε_{11} (Ns/VC)</td>
<td>β_2 (m3/kg)</td>
<td>β_0 (m3/kg)</td>
<td></td>
</tr>
<tr>
<td>5.8 $\times 10^{-3}$</td>
<td>95 $\times 10^{-6}$</td>
<td>2.82×10^{-9}</td>
<td>0.8 $\times 10^{-4}$</td>
<td>1.2 $\times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>m_1 (N/AmK)</td>
<td>χ_1 (C/m/kg)</td>
<td>P_1 (C2/m4)k</td>
<td>γ_1 (Nm2/Akg)</td>
<td>β_0</td>
<td></td>
</tr>
<tr>
<td>2.5×10^{-3}</td>
<td>0</td>
<td>-2.5×10^{-3}</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>b_0</td>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>0.11×10^{-36}</td>
<td>7750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Effect of inhomogeneity index on the a) Radial stress, b) Circumferential stress, c) Equivalent stress, d) Radial displacement (e) Electric potential and f) Magnetic potential.
According to Fig. 3a, increases in β results in increases in both the initial and creep radial stresses at a decreasing rate. However, the magnitude of the increase is more significant after creep occurs. Therefore, the magnitude of β has more effects on the behavior of the structure after creep occurs. In the case $\beta = 1$, the radial stress becomes tensile in some radii due to the fact that creep progresses after 6×10^8 s. Therefore, the proper value of β must be considered for the FGMEE in modern technologies because these ceramics are mechanically brittle and are very sensitive to tensile loads and may not be usable after some years. Fig. 3b shows that changes in hoop stress are more significant for a smaller value of β, especially near the interior surface. This is also correct for equivalent stress in Fig. 3c. Fig. 3d shows that the radial displacement after creep progress is less affected by the value of β. As shown in Fig. 3e, the effect of different values of β on the electric potential distribution is more significant after creep occurs. Moreover, changes in the value of β results in changes in the curvature direction as well as the sign of electric potential. Fig. 3f shows the effect of β on the magnetic potential distribution through the radius of the sphere both before and after creep occurs. It is worth mentioning that the equations are nonlinear functions of grading index. Consequently, the FGMEE exhibits no even alterations due to changing the grading index.

The effect of hygrothermal loading on the primitive and creep response of the FGMEE sphere is considered for the next case. The moisture concentration and temperature on the interior radii are considered to be zero, while the moisture concentration and temperature increase on the exterior surface. In this case, $\beta = 1.5$ and $M_b = T_b/200$ are assumed and other boundary conditions are as those of the previous one. The results are shown in the Fig. 4.

According to Fig. 4a, increases in hygrothermal loading on the outer surface results in decreases in compressive radial stress both for initial and creep cases. The radial stress becomes positive for more rises in the hygrothermal loading. Besides, changes in creep radial stress caused by rising hygrothermal loading is more significant in comparison to primitive radial stress. Consequently, the effect of hygrothermal loading after creep progress is more important rather than static problem. Regarding Fig. 4b, both initial and creep circumferential stress are increased by rising the hygrothermal loading. Also, there is a fix point near the inner radius for primitive hoop stress and near the outer radius for creep hoop stress so that the hoop stress is independent of hygrothermal loading.

Fig. 4. Effect of hygrothermal loading on the a) Radial stress, b) Circumferential stress, c) Equivalent stress, d) Radial displacement.
In addition, the maximum circumferential stress for the initial state is located near the inner surface. Conversely, the maximum circumferential stress is located near the outer surface after creep progress. Fig. 4c depicts that the equivalent stress is maximum near the inner radius for the static case, while it is vice versa after creep progresses. As demonstrated in Fig. 4d, an increase in applied hygrothermal loading leads to rises in both primitive and creep outward radial displacement.

To disclose the influence of temperature and moisture dependence of the elastic coefficients on the static response, the elastic coefficients can be expressed in the following form [17]:

\[C_{ij} = C_{ij0}(1 + \alpha^* T + \beta^* M) \]

in which \(C_{ij0} \) is the temperature and moisture independent elastic coefficient, \(\alpha^* \) and \(\beta^* \) are empirical material coefficients for the temperature and humidity dependence. In this research, the temperature and humidity dependence is only assumed for even temperature and moisture concentration increases so as to have no non-linear equations. In this case, the sphere is under uniform temperature and moisture concentration increases, \(T = 100, \ M = 5 \) and we have: \(Pa = 1 \)MPa, \(\beta = 1.5 \). Other boundary conditions are kept unchanged. Figs. 5 and 6 illustrate the influence of the temperature and humidity dependence of the elastic coefficients on the primitive and creep response of the FGMEE sphere, respectively. Due to similarity of the influence of the temperature and moisture concentration on the multiphysical response, the same magnitudes are used for the empirical constants of temperature and humidity dependence, while \(\alpha^* = \beta^* = 0 \) indicates the material properties which are independent of temperature and humidity.

Fig. 5. Effect of temperature and moisture dependency of the material coefficients on the distribution of initial elastic a) Radial stress, b) Circumferential stress, c) Electric potential, d) Magnetic potential and e) Radial displacement.
Fig. 6. Effect of temperature and moisture dependency of the elastic coefficients on the distribution of final creep a) Radial stress, b) Circumferential stress, c) Electric potential and d) Magnetic potential.

According to Figs. 5a and 6a, positive value of empirical constants increases the tensile radial stress, whereas the negative magnitude has a reverse influence. The effect of temperature and humidity dependency on the primitive radial stress is more significant in comparison with creep radial stress. Figs. 5b and 6b show the circumferential stress increases for positive value of empirical constants while the effect of minus value is vice versa. The changes are more intensive near the inner radius for initial stress. Figs. 5c and 5d as well as Figs. 6c and 6d depict that positive value of empirical constants leads to a decrease in electric and magnetic potential of each point while the negative one has a reverse effect. Fig. 5e illustrate that positive value of empirical constants reduces the outward radial displacement, and reversely, the minus value of empirical constants enhances the radial displacement.

To the best of author’s knowledge, there is no available paper in the literature for time-dependent creep analysis of MEE spheres. However, static behavior of FGMEME spheres has been studied in Ref. [12]. Thus, to verify the results, the radial and hoop stress distributions is compared in Fig. 7. The details of non-dimensional parameters and material constants can be found in Ref. [12]. In this case: Pa=2KPa, Tb=2, \(\Phi_b=2000 \) and other boundary conditions are kept at zero. As can be seen, the present results have a very good agreement with reported in Ref. [12].

5. Conclusions

The time-dependent creep analysis is carried out for a functionally graded magneto-electro-elastic thick-wall sphere under an axisymmetric hygro-thermo-magneto-electro-mechanical loading. The solution is
achieved by using the Prandtl-Reuss equations and Norton’s law. The conclusions can be as following:

- Regardless of the magnitude, the changes in the rate of stresses, electric and magnetic potentials and displacement, become less significant after 6×10^8s and reaches an approximately steady state after 8×10^8s.

- The absolute value of radial stress, radial displacement as well as electric and magnetic potentials is increasing in time at a decreasing rate. Also, the positive hoop stress decreases in time at the inner radius and increases in time at the outer radius with decrease rates.

- Increases in inhomogeneity-index leads to more increases in the creep radial stress rather than primitive radial stress. The effect of different value of on the electric potential distribution is more significant after creep occurs.

- Changes in creep radial stress caused by rising hygrothermal loading is more significant in comparison to primitive radial stress. Consequently, the effect of hygrothermal loading after creep progress is more important than static problem. Initial and creep circumferential stress and radial displacement increase as a result of rising the hygrothermal loading.

- Positive value of empirical constants increases the radial and circumferential stresses in both initial and creep state. Also, it decreases electric and magnetic potentials, while the minus value has a reverse effect. The effect of temperature and moisture dependency on the primitive radial stress is more significant in comparison with creep radial stress.

References

