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Abstract

In this paper, hygro-thermo-magneto-electro-elastic creep stress redistribution
of a functionally graded magneto-electro-elastic (FGMEE) hollow sphere is
examined. It is supposed that all material properties are a power-law function
of radius. Temperature and moisture concentration functions are obtained an-
alytically and then, a differential equation with creep strains is obtained using
equations of electrostatic, magnetostatic and equilibrium, At first, ignoring
the creep strains, a solution for the initial hygro-thermo-magneto-electroelastic
stresses at zero time is achieved. Subsequently, creep strains are considered and
creep stress rates are obtained. The Prandtl-Reuss equations and Norton’s law
are taken for the creep analysis. Finally, time-dependent creep stresses as well
as magnetic and potential field redistributions at any time are obtained using
an iterative method. Results show that the radial stress, radial displacement,
electric potential and magnetic potentials increase as time goes by at a
decreasing rate. Also, the grading index and hygrothermal condition have more
considerable effect on the radial stress after creep evolution rather than initial
case. Thus, their effects must be considered in creep evolution analysis.

Nomenclature
Br Magnetic induction βi Moisture expansion coefficients
cij Elastic coefficients Dr Electric displacement
d11 Magnetic coefficient e1j Piezoelectric coefficient
kC Moisture diffusivity coefficient kT Thermal conductivity coefficient
m1 Pyromagnetic coefficient p1 Pyroelectric coefficient
q1j Piezomagnetic coefficient αi Thermal modulus coefficients
ψ Magnetic potential β11 Dielectric coefficient
Cij0 Temperature and moisture independent

elastic coefficient
β∗ Empirical material coefficient for moisture

dependence
γ1 Hygromagnetic coefficient ε11 Electromagnetic coefficient
ε̇ci Creep strain rate ε̇ce Effective creep strain rate
ζi Hygroscopic stress coefficients ρ Density
σe Effective stress σi Stresses
α∗ Empirical material coefficient for tempera- χ1 Hygroelectric coefficient

ture dependence ϕ Electric potential
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1. Introduction

Magneto-electro-elastic (MEE) materials have simul-
taneous piezoelectric, piezomagnetic, and particularly
magnetoelectric coupling effects. Owing to this mul-
tifunctional ability in sensing and actuating, they
have found to have several applications in the area
of aerospace structures, damage detection, structural
health monitoring and energy harvesting [1]. In addi-
tion, due to the benefits of functionally graded materi-
als (FGMs) [2, 3], FGMEE was suggested. It is feasi-
ble to increase displacements and decrease stresses in
functionally graded actuators [4-6]. Given that these
materials are usually used under various loadings and
different environments, the analysis of the effects of
moisture and temperature on their performances is of
vital importance. Also, under severe conditions, these
materials show obvious creep property in time as a re-
sult of their inherent viscoelastic property [7]. Con-
sequently, the investigation of the time-dependent be-
havior of these structures under multiphysical condi-
tions is vital.

For MEE spherical structure, the dynamic response
of MEE hollow sphere was investigated by Wang and
Ding [8, 9]. Transient thermal stress in a multilay-
ered MEE hollow sphere was investigated by Ootao
and Ishihara [10]. Chen et al. [11] presented a solu-
tion for the spherically anisotropic MEE hollow sphere
problem. Saadatfar and Aghaie-Khafri [12] considered
the response of a FGMEE sphere in a hygrothermal
condition.

In the area of multiphysical analysis, several prob-
lems have been considered by researchers to discover
the multiphysical behavior of intelligent structures.
The coupled hygrothermal stress of laminated plates
was studied by Smittakorn and Heyliger [13]. Besides,
they [14] disclosed the effects of the hygro-thermo-
electro-mechanical conditions on the response of com-
posite plates. Using the finite element method, Raja
et al. [15] studied the hygro-thermo-piezoelectric inter-
actions in laminated plates and shells. Saadatfar and
Aghaie-Khafri [16, 17] disclosed that the actuation and
sensing authority of FGPM layers was widely affected
by their inhomogeneity index under hygro-thermo-
electro-mechanical loading. Later, Saadatfar [18] pre-
sented hygro-thermo-magneto-electro-elastic analysis
of a finite hybrid FGM cylindrical shell with FGPM
layers using differential quadrature method (DQM).

Some articles are available on creep behaviors in
FGM and piezoelectric spheres. You and Ou [19] car-
ried out creep investigation of hollow sphere with vari-
able creep properties. Loghman and Shokouhi [20]
investigated creep stresses in a hollow sphere using
a long-term creep model. Loghman et al. [21, 22]
conducted a time-dependent creep analysis of FGM
spheres. Dai et al. [7] presented the creep analy-
sis of a FGPM sphere subjected to thermo-electro-

mechanical loads. Jafari Fesharaki et al. [23] inves-
tigated the time-dependent response of a FGM thick-
walled sphere under thermomechanical loads using the
method of successive elastic solution. Ghorbanpour
Arani et al. [24] obtained the history of stresses
in a thick-walled piezoelectric sphere under thermo-
mechanical loads employing Mendelson’s method. Jab-
bari and Tayebi [25] derived an analytical solution
for creep stresses of a thick-walled sphere made of
porous FGPM in a magnetic field. Using Burgers’
creep model, Loghman and Tourang [26] investigated
non-stationary creep response of a smart sphere made
of polyvinylidene fluoride (PVDF). To the best of the
authors’ knowledge, time-dependent creep analysis of
a FGMEE thick-walled sphere with hygrothermal gra-
dient has not yet been conducted. Therefore, using the
Prandtl-Reuss equations and Norton’s law, this paper
studied the creep stress redistribution for FGMEE hol-
low sphere for the first time, to discover the effects of
potential interactions of various fields on the structural
response of FGMEE hollow spheres.

2. Formulation of the Problem

A FGMEE thick-walled sphere which is radially polar-
ized and magnetized is considered as shown in Fig. 1.
The inner and outer radius are considered as a and b,
respectively. Regarding spherically symmetric, mag-
netic and electric potentials, displacement, tempera-
ture and moisture concentration are the functions of
radius. All material coefficients are assumed to be a
simple power-law function of radius as: ξ(r) = ξ̄rβ ,
ξ = cij , e1j , q1j , β11, ε11, d11, p1, m1, αi, kT , kC ,
χ1, γ1, βi. Where, ξ̄ indicate corresponding material
coefficients and β is the grading parameter. cij , e1j ,
q1j , β11, ε11, d11, p1, m1, αi, kT , kC , χ1, γ1 and βi
are the elastic, piezoelectric, piezomagnetic, dielectric,
electromagnetic, magnetic, pyroelectric, pyromagnetic,
thermal expansion, thermal conductivity, moisture dif-
fusivity, hygroelectric, hygromagnetic and moisture ex-
pansion coefficients, respectively.

Fig. 1. FGMEE sphere.
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2.1. Temperature and Moisture Concentration
Problem

In an uncoupled hygrothermal analysis, the tempera-
ture and moisture concentration functions are obtained
independently by solving heat conduction and moisture
diffusion equations. The heat conduction and moisture
diffusion equations in axisymmetric and steady-state
condition are presented as [27]:

1

r2
∂

∂r

(
r2kT

∂T

∂r

)
= 0, (1a)

1

r2
∂

∂r

(
r2kC

∂M

∂r

)
= 0, (1b)

Integrating these equations twice yields:

T (r) =W1r
−β−1 +W2,

M(r) = S1r
−β−1 + S2·

(2)

The general hygrothermal boundary conditions can be
written as:

C11T
′(a) + C12T (a) = f1,

C21T
′(b) + C22T (b) = f2,

(3)

where Cij is the Robin-type boundary condition coeffi-
cients and f1 and f2 are known constants on the inner
and outer radius. Using these boundary conditions and
the constants Wi, one can write [28]:

W1 =
C22f1 − C12f2

C12((β + 1)C21b−(β+2) − C22b−(β+1))− C22((β + 1)C11ā(β+2) − C12a−(β+1))

W2 =
f1((β + 1)C21b

−(β+2) − C22b
−(β+1))− f2((β + 1)C11ā

(β+2) − C12a
−(β+1))

C12((β + 1)C21b−(β+2) − C22b−(β+1))− C22((β + 1)C11ā(β+2) − C12a−(β+1))

(4)

The constants Si can be obtained in the same way
for general hygrothermal boundary conditions. In this
study, the moisture concentration and temperature in-
side and outside of the sphere are taken to be Ma, Mb,
Ta and Tb, respectively. Thus, the constants can be
obtained as:

W1 =
Ta − Tb

a−(β+1) − b−(β+1)
,

W2 =
−Tab−(β+1) + Tba

−(β+1)

a−(β+1) − b−(β+1)

(5a)

S1 =
Ma −Mb

a−(β+1) − b−(β+1)
,

S2 =
−Mab

−(β+1) +Mba
−(β+1)

a−(β+1) − b−(β+1)

(5b)

2.2. Basic Equations of the Problem

It is assumed that total strains are the sum of
hygrothermal, electric, magnetic, elastic and creep
strains. Therefore, the stress-strain relation can be ex-
pressed as:

σr = c11
∂u

∂r
+ 2c12

u

r
+ e11

∂ϕ

∂r
+ q11

∂ψ

∂r
− λ1T

− ζ1M − c11ε
c
rr − 2c12ε

c
θθ (6a)

σθ = c12
∂u

∂r
+ (c22 + c23)

u

r
+ e12

∂ϕ

∂r
+ q12

∂ψ

∂r
− λ2T

− ζ2M − c12ε
c
rr − (c22 + c23)ε

c
θθ, (6b)

Dr = e11
∂u

∂r
+ 2e12

u

r
− β11

∂ϕ

∂r
− ε11

∂ψ

∂r
+ p1T + χ1M

− e11ε
c
rr − 2e12ε

c
θθ, (6c)

Br = q11
∂u

∂r
+ 2q12

u

r
− ε11

∂ϕ

∂r
− d11

∂ψ

∂r
+m1T + γ1M

− q11ε
c
rr − 2q12ε

c
θθ (6d)

where σi(r) (i = r, θ), ϕ, ψ, Dr and Br are components
of stress, electric and magnetic potentials, electric dis-
placement and magnetic induction, respectively. Also,
we have:

λ1 = c11αr + 2c12αθ,

λ2 = c12αr + (c22 + c23)αθ,
(7a)

ζ1 = c11βr + 2c12βθ,

ζ2 = c12βr + (c22 + c23)βθ,
(7b)

Without body forces, the equation of equilibrium is:

∂σr
∂r

+
2(σr − σθ)

r
= 0· (8)

The electrostatic and magnetostatic equations, with-
out electric charge and electric current densities, are:

∂Dr

∂r
+

2Dr

r
= 0, (9a)

∂Br

∂r
+

2Br

r
= 0· (9b)
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The boundary conditions are assumed as follow:

σr

∣∣∣∣
r=a

= −pa, σr

∣∣∣∣
r=b

= −pb,

ϕ

∣∣∣∣
r=a

= ϕa, ϕ

∣∣∣∣
r=b

= ϕb,

ψ

∣∣∣∣
r=a

= ψa, ψ

∣∣∣∣
r=b

= ψb·

(10)

Solving Eqs. (9), yields:

Dr =
A1

r2
, (11a)

Br =
A2

r2
, (11b)

Where, A1 and A2 are unknown constants. Substitut-
ing Eqs. (11) into Eqs. (6c) and (6d), yields:

∂ϕ(r)

∂r
=

1

β11

(
e11

∂u

∂r
+ 2e12

u

r
− ε11

∂ψ

∂r
− A1

r2
+ p1T

+ χ1M − e11ε
c
rr − 2e12ε

c
θθ

)
(12a)

∂ψ(r)

∂r
=

1

d11

(
q11

∂u

∂r
+ 2q12

u

r
− ε11

∂ϕ

∂r
− A2

r2
+m1T

+ γ1M − q11ε
c
rr − 2q12ε

c
θθ

)
(12b)

These equations can be rearranged as:

∂ϕ(r)

∂r
=

(
L1
∂u

∂r
+ 2L2

u

r
+ L3

A2

r2+β
+ L4T + L6M

− L5
A1

r2+β
− L1ε

c
rr − 2L2ε

c
θθ

)
(13a)

∂ψ(r)

∂r
=

(
P1
∂u

∂r
+ 2P2

u

r
+ P3

A1

r2+β
+ P4T + P6M

− P5
A2

r2+β
− P1ε

c
rr − 2P2ε

c
θθ

)
(13b)

where,

L1 =
ē11d̄11 − ε̄11q̄11
β̄11d̄11 − ε̄211

, L2 =
ē12d̄11 − ε̄11q̄12
β̄11d̄11 − ε̄211

L3 =
ε̄11

β̄11d̄11 − ε̄211
, L4 =

d̄11p̄1 − ε̄11m̄1

β̄11d̄11 − ε̄211

L5 =
d̄11

β̄11d̄11 − ε̄211
, L6 =

d̄11χ̄1 − ε̄11γ̄1
β̄11d̄11 − ε̄211

P1 =
q̄11β̄11 − ε̄11ē11
β̄11d̄11 − ε̄211

, P2 =
q̄12β̄11 − ē12ε̄11
β̄11d̄11 − ε̄211

P3 =
ε̄11

β̄11d̄11 − ε̄211
, P4 =

β̄11m̄1 − ε̄11p̄1
β̄11d̄11 − ε̄211

P5 =
β̄11

β̄11d̄11 − ε̄211
, P6 =

β̄11γ̄1 − ε̄11χ̄1

β̄11d̄11 − ε̄211

(14)

Substituting Eq. (13) into Eqs. (6a) and (6b) gives:

σr = C1r
β ∂u

∂r
+ 2C2r

β u

r
+ C3

A2

r2
+ C4

A1

r2
+ C5r

βT + C6r
βM

− λ̄1r
2βT − ζ̄1r

2βM − C1r
βεcrr − 2C2r

βεcθθ, (15a)

σθ = E1r
β ∂u

∂r
+ 2E2r

β u

r
+ E3

A2

r2
+ E4

A1

r2
+ E5r

βT + E6r
βM

− λ̄2r
2βT − ζ̄2r

2βM − E1r
βεcrr − 2E2r

βεcθθ, (15b)

where,

C1 = c̄11 + ē11L1 + q̄11P1,

C2 = c̄12 + ē11L2 + q̄11P2,

C3 = ē11L3 − q̄11P5,

C4 = −ē11L5 + q̄11P3,

C5 = −ē11L4 + q̄11P4,

C6 = ē11L6 + q̄11P6,

E1 = c̄12 + ē12L1 + q̄12P1,

E2 =

(
c̄22 + c̄23

2

)
+ ē12L2 + q̄12P2,

E3 = ē12L3 − q̄12P5,

E4 = −ē12L5 + q̄12P3,

E5 = ē12L4 + q̄12P4,

E6 = ē12L6 + q̄12P6

(16)

Substituting Eqs. (15) into Eq. (8), the equilibrium
equation is now can be expressed as:

∂2u

∂r2
+

1

r
M1

∂u

∂r
+

1

r2
M2u =M3r

β−1T +M4
T

r

+ (−M5 +M6r
β)
∂T

∂r
+M7

A2

r3+β
+M8

A1

r3+β

+M9r
β−1M +M10

M

r
+ (−M11 +M12r

β)
∂M

∂r

+M13r
−1εcrr +

∂εcrr
∂r

+ 2M14r
−1εcθθ + 2M15

∂εcθθ
∂r

(17)
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where,

M1 =
C1(β + 2) + 2C2 − 2E1

C1
,

M2 =
2C2(β + 1)− 4E2

C1
,

M3 =
2(λ̄1(β − 2) + λ̄2)

C1
,

M4 =
2E5 − C5(β + 2)

C1
,

M5 =
C5

C1
,

M6 =
λ̄1

C1
,

M7 =
2E3

C1
, (18)

M8 =
2E4

C1
,

M9 =
2(ζ̄1(β − 2) + ζ̄2)

C1
,

M10 =
2E6 − C6(β + 2)

C1
,

M11 =
C6

C1
,

M12 =
ζ̄

C1
,

M13 =
C1(β + 2)− 2E1

C1
,

M14 =
C2(β + 2)− 2E2

C1
,

M15 =
C2

C1

3. Solution of the Equations

3.1. Initial Stress Analysis
To determine initial stresses, ignoring creep strains in
Eq. (17), the following differential equation was ob-
tained using Eqs. (2) in to Eq. (17):
∂2u

∂r2
+
M1

r

∂u

∂r
+
M2

r2
u = (M3W2 +M9S2)r

β−1

+ (M4W2 +M10S2)r
−1 +

[
W1(M4 +M5(β + 1))

+ S1(M10 +M11(β + 1))
]
r−β−2 +

[
W1(M3 −M6(β + 1)

+ S1(M9 −M12(β + 1))
]
r−2 +M7

A2

r3+β
+M8

A1

r3+β
· (19)

The solution of Eq. (19) may be considered as:

u = ug + up· (20)

The homogeneous solution of the Eq. (20) can be found
as:

ug = B1r
m1 +B2r

m2 , (21)

where B1 and B2 are constants and we have:

m1,2 =
1

2

(
− (M1 − 1)±

√
(M1 − 1)2 − 4M2

)
· (22)

In order to use numerical values, real, distinct roots
will only be considered for every value of β [12]. There-
fore, the stress expressions will be written using Eq.
(22). Here, different magnitudes of β are used to dis-
cover its effect on the response of FGMEE thick-walled
sphere. However, these magnitudes of � are not neces-
sarily related to a specific material. The particular
solution of Eq. (19) can be considered as:

up = B3r +B4r
β+1 +B5r

−β +B6

+B7A2r
−(β+1) +B8A1r

−(β+1),
(23)

where,

B3 =
M4W2 +M10S2

M1 +M2
,

B4 =
M3W2 +M9S2

M2 + (β + 1)(β +M1)

B5 =
W1

(
M4 +M5(β + 1) + S1(M10 +M11(β + 1)

)
β(β + 1)− βM1 +M2

B6 =
W1(M3 −M6(β + 1) + S1(M9 −M12(β + 1))

M2
,

B7 =
M7

(β + 1)(β + 2−M1) +M2
,

B8 =
M8

(β + 1)(β + 2−M1) +M2
·

(24)

Thus, the complete solution is:

u = u+ up

= B1r
m1 +B2r

m2 +B3r +B4r
β+1 +B5r

−β

+B6 +B7A2r
−(β+1) +B8A1r

−(β+1)·

(25)

When u(r) is known, Eq. (13a) can be expressed as:

∂ϕ(r)

∂r
=

(
L1

(
B1m1r

m1−1 +B2m2r
m2−1 +B3

+B4(β + 1)rβ −B5βr
−(β+1) − (β + 1)B8A1r

−(β+2)

− (β + 1)B7A2r
(β+2)))+ 2L2

(
β1r

m1−1 +B2r
m2−1 +B3

+B4r
β +B5r

−(β+1) +B8A1r
−(β+2) +B7A2r

−(β+2) +
B6

r

)

+ L3
A2

r2+β
− L5

A1

r2+β
+ L4

(
W1r

−(β+1) +W2)

+ L6

(
S1r

−(β+1) + S2

)
· (26)
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Integrating Eq. (26), we have:

ϕ(r) =
(
L1

(
B1r

m1 +B2r
m2 +B3r +B4r

β+1

+B5r
−β −B8A1r

−(β+1) +B7A2r
−(β+1)))

+ 2L2

(
B1

m1
rm1 +

B2

m2
rm2 +B3r +

B4

β + 1
rβ+1

− B5

β
r−β − B8A1

(β + 1)
r−(β+1) − B7A2

(β + 1)
r−(β+1)

+B6 ln(r)

)
− L3

A2

(β + 1)
r−(β+1)

+ L5
A1

(β + 1)
r−(β+1) + L4

(
− W1

β
r−β +W2r

)

+ L6

(
− S1

β
r−β + S2r

)
+ Z1· (27)

Where Z1 is a constant. Likewise, ψ(r) can be written
as:
ψ(r) =

(
P1

(
B1r

m1B2r
m2 +B3r +B4r

β+1 +B5r
−β

+B8A1r
−(β+1) +B7A1r

−(β+1)))+ 2P2

(
B1

m1
rm1

+
B2

m2
rm2 +B3r +

B4

β + 1
rβ+1 − B5

β
r−β

− B8A1

(β + 1)
r−(β+1) − B7A2

(β + 1)
r−(β+1) +B6 ln(r)

)

+ P5
A2

(β + 1)
r−(β+1) − P3

A1

(β + 1)
r−(β+1)

+ P4

(
−W1

β
r−β +W2r

)

+ P6

(
−S1

β
r−β + S2r

)
+ Z2· (28)

Where Z2 is an unknown constant. Substituting Eq.
(2), Eq. (23), Eq. (27) and (28) into Eq. (15), the
initial radial and hoop stresses of the thick-walled FG-
MEE sphere were obtained as:

σr = C1r
β(B1m1r

m1−1 +B2m2r
m2−1 +B3 +B4(β + 1)rβ

−B5βr
−β−1 − (β + 1)B8A1r

−β−2 − (β + 1)B7A2r
−β−2)

+ 2C2r
β

(
B1r

m1−1 +B2r
m2−1 +B3 +B4r

β +B5r
−(β+1)

+B8A1r
−(β+2) +B7A2r

−(β+2) +B7A2r
−(β+2) +

B6

r

)

+ C3
A2

r2
+ C4

A1

r2
+ (C5r

β − λ̄1r
2β)(W1r

−(β+1) +W2)

+ (C6r
β − ζ̄1r

2β)(S1r
−(β+1) + S2)· (29)

σθ = E1r
β(B1m1r

m1−1 +B2m2r
m2−1 +B3 +B4(β + 1)rβ

−B5βr
−β−1 − (β + 1)B8A1r

−β−2 − (β + 1)B7A2r
−β−2)

+ 2E2r
β

(
B1r

m1−1 +B2r
m2−1 +B3 +B4r

β +B5r
−(β+1)

+B8A1r
−(β+2) +B7A2r

−(β+2) +
B6

r

)

+ E3
A2

r2
+ E4

A1

r2
+ (E5r

β − λ̄2r
2β)

(
W1r

−(β+1) +W2

)
+ (E6r

β − ζ̄2r
2β)(S1r

−(β+1) + S2

)
· (30)

Employing the electro-magneto-mechanical boundary
conditions, the unknown constants A1, A2, B1, B2, Z1

and Z2 can be found by solving the system of six linear
algebraic equations which can be expressed as:

X[B1 B2 A1 A2 Z1 Z2]
T = F, (31)

Where X and F are known matrix. Now, the initial
stresses, radial displacement, electric and magnetic po-
tential are known at zero time.

3.2. Time-dependent Creep Analysis

Assuming the temperature and moisture concentration
to be constant-time, differentiation Eq. (17) with re-
spect to time gives:

∂2u̇

∂r2
+

1

r
M1

∂u̇

∂r
+

1

r2
M2u̇ =M7

Ȧ2

r3+β
+M8

Ȧ1

r3+β

+M13r
−1ε̇crr +

∂ε̇crr
∂r

+ 2M14r
−1ε̇cθθ + 2M15

∂ε̇cθθ
∂r

(32)

Creep rates can be related to the stresses by the Prandtl-
Reuss equations as [25, 29]:

ε̇cr =
ε̇ce
σe

(σr − 0.5(σθ + σϕ))

ε̇cθ =
ε̇ce
σe

(σθ − 0.5(σr + σϕ))

ε̇cϕ =
ε̇ce
σe

(σϕ − 0.5(σθ + σr))

(33)

Where, ε̇ci (i = r, θ, ϕ) is the creep strain rate, ε̇ce is the
effective creep strain rate and σe is the effective stress.
The Norton’s law is considered as the creep constitu-
tive model in the following form [25, 30]:

ε̇ce = B(r)σn(r)
e (34)

Where B(r) and n(r) are material creep parameters.
They are considered as function of radius as [21, 31]:

B(r) = b0r
b1 , n(r) = n0 (35)
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Where b0, b1 and n0 are constants. Considering sym-
metry of the problem and substituting Eq. (35) into
Eq. (33), gives:

ε̇cr = B(r)σn0−1
e (σθ − σr)

ε̇cθ =
B(r)

2
σn0−1
e (σθ − σr)

(36)

The Von Mises equivalent stress is considered as:

σe =
1√
2

√
(σθ − σr)2 + (σθ − σϕ)2 + (σϕ − σr)2

= |σθ − σr|
(37)

Using Eq. (37), Eq. (36) yields:

ε̇cr = −B(r)σn0
e

ε̇cθ =
B(r)

2
σn0
e

(38)

Substituting Eq. (38) into Eq. (32), gives:

∂2u̇

∂r2
+

1

r
M1

∂u̇

∂r
+

1

r2
M2u̇ =

M7
Ȧ2

r3+β
+M8

Ȧ2

r3+β
+ b0r

b1−1σn0
e

(
M14 +M15b1

−M13 − b1
)
+ (M15 − 1

)
b0r

b1
∂σn0

e

∂r

(39)

Using a similar method as in previous section, the so-
lution can be expressed as:

u̇ = D1r
m1 +D2r

m2 +G11r
m1 +G21r

m2

+B8r
−(β+1)Ȧ1 +B7r

−(β+1)Ȧ2

(40)

Where G11(r) and G21(r) can be achieved by method
of variation of parameters as:

G11(r) =
b0

m2 −m1

∫ {
rb1−m1σn0

e (M14 +M15b1 −M13 − b1) + (M15 − 1)rb1−m1+1 ∂σ
n0
e

∂r

}
dr

G21(r) = − b0
m2 −m1

∫ {
rb1−m2σn0

e (M14 +M15b1 −M13 − b1) + (M15 − 1)rb1−m2+1 ∂σ
n0
e

∂r

}
dr

(41)

Differentiation Eq. (15) and Eq. (13) with respect to time yields:

σ̇r = C1r
β ∂u̇

∂r
+ 2C2r

β u̇

r
+ C3

Ȧ2

r2
+ C4

Ȧ1

r2
+ (C1 − C2)b0r

b1+βσn0
e , (42a)

σ̇θ = E1r
β ∂u̇

∂r
+ 2E2r

β u̇

r
+ E3

Ȧ2

r2
+ E4

Ȧ1

r2
+ (E1 − E2)b0r

b1+βσn0
e , (42b)

∂ϕ̇

∂r
= L1

∂u̇

∂r
+ 2L2

u̇

r
− L5

Ȧ1

r2+β
+ L3

Ȧ2

r2+β
− L1ε̇

c
rr − 2L2ε̇

c
θθ, (42c)

∂ψ̇

∂r
= P1

∂u̇

∂r
+ 2P2

u̇

r
+ P3

Ȧ1

r2+β
− P5

Ȧ2

r2+β
− P1ε̇

c
rr − 2P2ε̇

c
θθ (42d)

Substituting Eq. (40) in Eq. (42) gives:

σ̇r = D1((m1C1 + 2C2)r
β+m1−1) +D2((m2C1 + 2C2)r

β+m2−1) + (B8(2C2 − C1(1 + β)) + C4)
Ȧ1

r2

+ (B7(2C2 − C1(1 + β)) + C3)
Ȧ2

r2
+ C1r

β

(
∂G11

∂r
rm1 +G11m1r

m1−1 +
∂G21

∂r
rm2 +G21m2r

m2−1

)
+ 2C2r

β−1(G11r
m1 +G21r

m2) + (C1 − C2)b0r
b1+βσn0

e (43a)

σ̇θ = D1((m1E1 + 2E2)r
β+m1−1) +D2((m2E1 + 2E2)r

β+m2−1) + (B8(2E2 − E1(1 + β)) + E4)
Ȧ1

r2

+ (B7(2E2 − E1(1 + β)) + E3)
Ȧ2

r2
+ E1r

β

(
∂G11

∂r
rm1 +G11m1r

m1−1 +
∂G21

∂r
rm2 +G21m2r

m2−1

)
+ 2E2r

β−1(G11r
m1 +G21r

m2) + (E1 − E2)b0r
b1+βσn0

e (43b)
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ϕ̇ = D1r
m1

(
L1 +

2L2

m1

)
+D2r

m2

(
L1 +

2L2

m2

)
− (B8(2L2 − (1 + β)L1)− L5)

r−(β+1)

(β + 1)
Ȧ1

− (B7(2L2 − L1(1 + β)) + L3)
r−(β+1)

(β + 1)
Ȧ2 +

∫ (
L1

(
∂G11

∂r
rm1 +G11m1r

m1−1

+
∂G21

∂r
rm2 +G21m2r

m2−1

)
+ 2L2(+G11r

m1−1 +G21r
m2−1) + (L1 − L2)b0r

b1σn0
e

)
dr + J1 (43c)

ψ̇ = D1r
m1

(
P1 +

2P2

m1

)
+D2r

m2

(
P1 +

2P2

m2

)
− (B8(2P2 − P1(1 + β)L+ P3)

r−(β+1)

(β + 1)
Ȧ1

− (B7(2P2 − P1(1 + β))− P5)
r−(β+1)

(β + 1)
Ȧ2 +

∫ (
P1

(
∂G11

∂r
rm1 +G11m1r

m1−1

+
∂G21

∂r
rm2 +G21m2r

m2−1

)
+ 2P2(+G11r

m1−1 +G21r
m2−1) + (P1 − P2)b0r

b1σn0
e

)
dr + J2 (43d)

The six unknown constants can be achieved using
the boundary conditions. The internal and external
mechanical pressure and the electric and magnetic po-
tential of the sphere do not vary in time. Thus, we
have:

σ̇r

∣∣∣∣
r=a

= 0, σ̇r

∣∣∣∣
r=b

= 0,

ϕ̇r

∣∣∣∣
r=a

= 0, ϕ̇r

∣∣∣∣
r=b

= 0, (44)

ψ̇r

∣∣∣∣
r=a

= 0, ψ̇r

∣∣∣∣
r=b

= 0,

The resultant system of linear equations can be solved
in the same as the previous section. To achieve the his-
tory of stresses and the electric and magnetic potential
through creep progress, the stress rates and the gradi-
ent of electric and magnetic potential rate are needed.
Firstly, a suitable time increment is selected for tim-
ing steps (dt(i)). The total time is taken as the sum
of timing steps. Thus, for the ith time increment, the
total time is:

ti =
i∑

k=0

dt(k) (45)

For the next timing steps, the radial and circumfer-
ential stresses as well as electric and magnetic poten-
tial distributions for the previous step are available,
and then, the radial and circumferential stress rates
are obtained from Eq. (43). Finally, the creep stress
and electric and magnetic potential distribution can be
found using an iterative method as:

ℜ(i)(r, ti) = ℜ(i−1)(r, ti−1) + ℜ̇(i−1)(r, ti−1)dt
(i),

ℜ = σθ, σr, ψ, ϕ
(46)

4. Numerical Results and Discussions

Material coefficients for the FGMEE are used as ex-
pressed in Table 1 [12, 25]. The interior and exte-
rior radius of the sphere is considered as a = 0.1m
and b = 0.13m, respectively. The following non-
dimensional parameters are used:

R =
r − a

b− a
, u∗ =

u

a
, σ∗

i =
σi
Pa
, (i = r, θ),

ϕ∗ =

√
β11
c11

ϕ

b
, ψ∗ =

√
d11
c11

ψ

b
·

(47)

For the first case, the creep evolution through the time
is investigated. The hygro-thermo-magneto-electro-
mechanical boundary condition is considered as:

Pa = 10MPa, ϕa = 0, ϕb = 6000, ψa = 0,

ψb = 0, Ta = 0, Tb = 100, Ma = 0, Mb = 2·
(48)

Fig. 2 shows the creep evolution of hollow FGMEE
sphere under multiphysical environmental condition
and loading. In this analysis, inhomogeneity index
β =2 and time increment dt = 1 × 105s is used. As
can be seen, radial stress and electric and magnetic po-
tential are time-constant in the inner and outer radii,
which satisfies the constant boundary conditions. Re-
gardless of the magnitude, the changes in the rate of
stresses, electric and magnetic potentials and displace-
ment, become less significant after 6×108s and reaches
an approximately steady state after 8× 108s. Accord-
ing to Figs. 2a, 2e and 2f, the absolute magnitude of
radial stress and the electric and magnetic potentials
increases with the time at a decreasing rate. From Fig.
2b, it can be observed that the positive hoop stress
decreases in time in the inner radius and increases in
time in the outer radius. The increases in tensile hoop
stress should be considered in design progress as it is

Effect of Hygrothermal Environmental Conditions on the Time-dependent Creep Response of Functionally
Graded Magneto-electro-elastic Hollow Sphere: 27–41 34



the circumferential stress rather than the radial stress
which causes failure of the elastic hollow spheres [32,
33].

Fig. 2c shows that the equivalent stress decreases
in time in the internal radius, while it exhibits a re-
verse behavior in the outer radius. Fig. 2d reveals
that outward maximum radial displacement is in the
inner radii and it decreases smoothly towards the outer

radii. Also, the displacement increases at a decreasing
rate over time.

In the next case, the effect of inhomogeneity in-
dex on the initial and creep behavior of FGMEE thick-
walled sphere is revealed. Tb = 50 and other boundary
conditions are assumed as those of the previous case.
Fig. 3 shows the results for different inhomogeneity in-
dexes at initial state of the problem and after 6×108s.

Fig. 2. a) Radial creep stress redistribution, b) Circumferential creep stress redistribution, c) Equivalent creep
stress redistribution, d) Radial displacement histories, e) Electric potential and f) Magnetic potential histories
during creep evolution.
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Table 1
Material constants.
c11(GPa) c12(GPa) c23(GPa) c22(GPa) e11(C/m2)
215 120 120 218 7.5
e12(C/m2) αr(1/K) αθ(1/K) q11(N/Am) q12(N/Am)
-2.5 6× 10−6 15× 10−6 345 265
β11(C2/Nm2) d11(Ns2/C2) ε11(Ns/VC) β2(m3/kg) βθ(m3/kg)
5.8× 10−9 95× 10−6 2.82× 10−9 0.8× 10−4 1.2× 10−4

m1(N/AmK) χ1(Cm/kg) P1(C2/m2k) γ1(Nm2/Akg) n0
2.5× 10−5 0 −2.5× 10−5 0 3
b1 b0 ρ
−5 0.11× 10−36 7750

Fig. 3. Effect of inhomogeneity index on the a) Radial stress, b) Circumferential stress, c) Equivalent stress,
d) Radial displacement (e) Electric potential and f) Magnetic potential.
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According to Fig. 3a, increases in β results in in-
creases in both the initial and creep radial stresses at a
decreasing rate. However, the magnitude of the the in-
crease is more significant after creep occurs. Therefore,
the magnitude of β has more effects on the behavior of
the structure after creep occurs. In the case β = 1, the
radial stress becomes tensile in some radii due to the
fact that creep progresses after 6×108s. Therefore, the
proper value of β must be considered for the FGMEE
in modern technologies because these ceramics are me-
chanically brittle and are very sensitive to tensile loads
and may not be usable after some years. Fig. 3b shows
that changes in hoop stress are more significant for a
smaller value of β, especially near the interior surface.
This is also correct for equivalent stress in Fig. 3c.
Fig. 3d shows that the radial displacement after creep
progress is less affected by the value of β. As shown
in Fig. 3e, the effect of different values of β on the
electric potential distribution is more significant after
creep occurs. Moreover, changes in the value of β re-
sults in changes in the curvature direction as well as
the sign of electric potential. Fig. 3f shows the effect
of β on the magnetic potential distribution through the
radius of the sphere both before and after creep occurs.
It is worth mentioning that the equations are nonlinear
functions of grading index. Consequently, the FGMEE

exhibits no even alterations due to changing the grad-
ing index.

The effect of hygrothermal loading on the primitive
and creep response of the FGMEE sphere is considered
for the next case. The moisture concentration and tem-
perature on the interior radii are considered to be zero,
while the moisture concentration and temperature in-
crease on the exterior surface. In this case, β = 1.5 and
Mb = Tb/200 are assumed and other boundary condi-
tions are as those of the previous one. The results are
shown in the Fig. 4.

According to Fig. 4a, increases in hygrothermal
loading on the outer surface results in decreases in com-
pressive radial stress both for initial and creep cases.
The radial stress becomes positive for more rises in
the hygrothermal loading. Besides, changes in creep
radial stress caused by rising hygrothermal loading
is more significant in comparison to primitive radial
stress. Consequently, the effect of hygrothermal load-
ing after creep progress is more important rather than
static problem. Regarding Fig. 4b, both initial and
creep circumferential stress are increased by rising the
hygrothermal loading. Also, there is a fix point near
the inner radius for primitive hoop stress and near the
outer radius for creep hoop stress so that the hoop
stress is independent of hygrothermal loading.

Fig. 4. Effect of hygrothermal loading on the a) Radial stress, b) Circumferential stress, c) Equivalent stress,
d) Radial displacement.
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In addition, the maximum circumferential stress for
the initial state is located near the inner surface. Con-
versely, the maximum circumferential stress is located
near the outer surface after creep progress. Fig. 4c
depicts that the equivalent stress is maximum near the
inner radius for the static case, while it is vice versa
after creep progresses. As demonstrated in Fig. 4d, an
increase in applied hygrothermal loading leads to rises
in both primitive and creep outward radial displace-
ment.

To disclose the influence of temperature and mois-
ture dependence of the elastic coefficients on the static
response, the elastic coefficients can be expressed in the
following form [17]:

Cij = Cij0(1 + α∗T + β∗M) (49)

in which Cij0 is the temperature and moisture inde-
pendent elastic coefficient, α∗ and β∗ are empirical

material coefficients for the temperature and humidity
dependence. In this research, the temperature and hu-
midity dependence is only assumed for even tempera-
ture and moisture concentration increases so as to have
no non-linear equations. In this case, the sphere is un-
der uniform temperature and moisture concentration
increases, T = 100, M = 5 and we have: Pa = 1MPa,
β = 1.5. Other boundary conditions are kept un-
changed. Figs. 5 and 6 illustrate the influence of the
temperature and humidity dependence of the elastic
coefficients on the primitive and creep response of the
FGMEE sphere, respectively. Due to similarity of the
influence of the temperature and moisture concentra-
tion on the multiphysical response, the same magni-
tudes are used for the empirical constants of tempera-
ture and humidity dependence, while α∗ = β∗ = 0 in-
dicates the material properties which are independent
of temperature and humidity.

Fig. 5. Effect of temperature and moisture dependency of the material coefficients on the distribution of initial
elastic a) Radial stress, b) Circumferential stress, c) Electric potential, d) Magnetic potential and e) Radial
displacement.
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Fig. 6. Effect of temperature and moisture dependency of the elastic coefficients on the distribution of final
creep a) Radial stress, b) Circumferential stress, c) Electric potential and d) Magnetic potential.

According to Figs. 5a and 6a, positive value of
empirical constants increases the tensile radial stress,
whereas the negative magnitude has a reverse influ-
ence. The effect of temperature and humidity depen-
dency on the primitive radial stress is more significant
in comparison with creep radial stress. Figs. 5b and
6b show the circumferential stress increases for positive
value of empirical constants while the effect of minus
value is vice versa. The changes are more intensive
near the inner radius for initial stress. Figs. 5c and 5d
as well as Figs. 6c and 6d depict that positive value
of empirical constants leads to a decrease in electric
and magnetic potential of each point while the negative
one has a reverse effect. Fig. 5e illustrate that posi-
tive value of empirical constants reduces the outward
radial displacement, and reversely, the minus value of
empirical constants enhances the radial displacement.

To the best of author’s knowledge, there is no avail-
able paper in the literature for time-dependent creep
analysis of MEE spheres. However, static behavior of
FGMEE spheres has been studied in Ref. [12]. Thus,
to verify the results, the radial and hoop stress distri-
butions is compared in Fig. 7. The details of non-
dimensional parameters and material constants can be
found in Ref. [12]. In this case: Pa=2KPa, Tb=2,
Φb=2000 and other boundary conditions are kept at

zero. As can be seen, the present results have a very
good agreement with reported in Ref. [12].

Fig. 7. Radial and circumferential stresses.

5. Conclusions

The time-dependent creep analysis is carried out for
a functionally graded magneto-electro-elastic thick-
walled sphere under an axisymmetric hygro-thermo-
magneto-electro-mechanical loading. The solution is
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achieved by using the Prandtl-Reuss equations and
Norton’s law. The conclusions can be as following:

• Regardless of the magnitude, the changes in the
rate of stresses, electric and magnetic potentials
and displacement, become less significant after
6 × 108s and reaches an approximately steady
state after 8× 108s.

• The absolute value of radial stress, radial dis-
placement as well as electric and magnetic po-
tentials is increasing in time at a decreasing rate.
Also, the positive hoop stress decreases in time
at the inner radius and increases in time at the
outer radius with decrease rates

• Increases in inhomogeneity-index leads to more
increases in the creep radial stress rather than
primitive radial stress. The effect of different
value of � on the electric potential distribution
is more significant after creep occurs.

• Changes in creep radial stress caused by rising
hygrothermal loading is more significant in com-
parison to primitive radial stress. Consequently,
the effect of hygrothermal loading after creep
progress is more important than static problem.
Initial and creep circumferential stress and radial
displacement increase as a result of rising the hy-
grothermal loading.

• Positive value of empirical constants increases the
radial and circumferential stresses in both ini-
tial and creep state. Also, it decreases electric
and magnetic potentials, while the minus value
has a reverse effect. The effect of temperature
and moisture dependency on the primitive ra-
dial stress is more significant in comparison with
creep radial stress.
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