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Abstract

In the present study, a micromechanical modeling approach based on volumet-
ric element was considered from a composite consisted of three components:
matrix, particle, and particle-matrix intermediate phase. In order to predict
the behavior of the damage evolution in the composite, the particle-matrix
intermediate phase was modeled based on the cohesive zone model and
disruptive elastoplastic behavior was considered for matrix. In order to study
the efficiency of the implemented model, at first, modeling processes were
conducted using the USERMAT code in finite element ANSYS software, and
then the growth of fatigue damage was investigated in the AL composite rein-
forced with SiC particles. For this purpose, after the study of characterization
static constant of cohesive zone model, validation of the static model was
approved. S-N curve obtained from experimental results for pure AL were
used for Characterization fatigue constants of the matrix. Comparison of the
obtained results from finite element analysis with that of experiment, justifies
the capability of the employed model to predict the fatigue life of metal matrix
composites reinforced with particles in other conditions and is able to consider
the effect of volume fraction in predicting fatigue life while the modelbenefits
from the lowest tests for the characterization constants of model.

Nomenclature
σ Stress ϵ Strain
γ Shear strain τ Shear stress
R Radius of the particles Vf Volume fraction of the particles
GIC Fracture toughness β The combination mode ratio
γf
m Shear strain at the end of the damage εm Current effective strain

h0 Interlayer thickness C Reduced interlayer stiffness matrix
E0 Initial Young’s moduli G0 Initial shear moduli
D Damage c Empirical constants
Gc Fracture toughness σ̄ Hydrostatic stress
ε∗ij Resulting strains WD

0 Maximum strain energy density
σR
Ut Residual strength at the current moment σ0

Ut Initial tensile strength
N Cycle E & G Elastic stiffness
Gc Fracture toughness Ad Damaged area
τc Strength of the interlayer zone lcz Identity matrix
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K Initial stiffness of the interlayer element ε0n Normal interlayer strain
γ0
tn Out-of-plane shear strains in the interlayer

element
ε∗n Irreversibility condition associated with

damage parameter in the interlayer element
E Young’s modulus along the thickness direc-

tion
∆WD Changes in the strain (deformation) energy

per unit volume
b Length of the crack front (width of the sam-

ple)
m & c Constants in Paris’ law for crack length

growth rate
Aε Cohesive element area in the interlayer

debonding plane
ε∗m Maximum effective strain during each load-

ing stage
∆G Changes in the strain energy release rate

of the cohesive element during the current
fatigue cycle

Gth

m

Strain energy release rate of the cohesive el-
ement on the average of fatigue initiation
Empirical constant

1. Introduction

Achieving materials with more efficient mechanical
properties is of great significance. In addition to paving
the way for the development of new productions, manu-
facturing new materials with higher strength helps op-
timizing machinery and equipment. Industries’ need
for lightweight materials of more strength has led to
researches on as well as the development of new ma-
terials. Under difficult conditions where high strength
at high temperatures is required, more researches and
studies are to be conducted on the production of metal-
based materials. Hence, most of the recent researches
on advanced materials have been focused on metal-
based composites, which are among the engineering
materials capable of meeting the aforementioned re-
quirements.

Amongst metals, after iron and steel, aluminum
holds second place in the world market. Rapid growth
in the aluminum industry is associated with different,
unique properties of aluminum, making it one of the
most engineering and structural materials. Although
aluminum is lightweight, some of its alloys outperform
structural steel in terms of strength. Aluminum ex-
hibits good electrical and thermal conductivity and is
a good reflector of light and heat. In most applica-
tions, aluminum can highly resist to corrosion and is
considered a non-toxic metal. Aluminum can be man-
ufactured or cast into any shape with the various sur-
face finish. Considering all these various properties, it
is not surprising aluminum is the first priority among
engineering materials [1].

Pure aluminum is fairly soft. In order to deal with
this problem, this metal may be combined with other
metals (alloying elements) to form alloys. Most alu-
minum available in the market is alloyed with at least
one other element [2]. Aluminum alloy is extensively
combined with different ceramic particles as reinforce-
ment, among the most widely used of which silicon
carbide may be pointed out.

Hence, these materials inherit metal properties such
as flexibility and toughness as well as ceramic proper-
ties such as high stiffness (Young’s modulus) and high
strength [3].

Damages in particle-reinforced metal-matrix com-
posites (PMCs) are associated with changes in the ma-
trix of particles and may occur as 1. fracture of parti-
cles, 2. deboning or cracking of the interface between
the matrix and particles, and 3. matrix damage caused
by merging and growth of microscopic voids or shear
processes [4].

Aluminum-based composites provide particular ad-
vantages in aerospace and automotive industries as well
as other structural applications. Additionally, com-
posite failure due to cyclic loads is considered a major
problem in these industries. Hence, the fatigue behav-
ior of these materials is an important factor to be taken
into account [5].

Fatigue is the phenomenon in which mechanical
properties decline due to cyclic loading. Cyclic loads
may be of the mechanical and thermal type or a com-
bination of both. Fatigue behavior of structural mate-
rials is usually divided into two stages: 1) Crack nucle-
ation, and 2) Crack Growth [6].

Employing ceramic particle reinforcements of high
stiffness can significantly increase the resistance
against fatigue. Fatigue resistance in PMMCs depends
on many factors including the volume fraction of par-
ticles, particle size, microstructure of the matrix and
interface, presence of inclusion or defects caused by
the production process, and environmental conditions
of the experiment [7-11].

Nemati and his coworker (2016) studied the an-
nealed CP-Ti (Grade 2) by Equal Channel Angular
Extrusion (ECAE) up to 2 passes at a temperature of
400◦C following route A with a constant ram speed of
30mm/min through a die angle of 90◦ between the die
channels. Mechanical properties of the extruded mate-
rials were obtained at different strain rates.

The results indicated that the tensile yield stress
and ultimate tensile strength of the extruded speci-
mens increased significantly after 2 passes of ECAE
process [12].

Madadi and his coworkers in (2018) studied the
bond stress in steel reinforcements embedded in con-
crete containing polymer fibers, micro- and nano-silica
particles.
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The results indicated that micro and nano-silica
particles, compared to fibers, had more impacts on
improving the reinforcement-concrete bond strength.
Moreover, the highest bond strength was observed for
the specimen containing equal content of the micro and
nano-silica particle [13].

Majzoobi and his coworkers (2018) studied the Mg-
SiC nanocomposite specimens, which were produced
at low strain rate of 8 × 10−3s−1, using a univer-
sal INSTRON testing machine, strain rate of about
8× 102s−1 using a drop hammer and at strain rate of
about 1.6× 103s−1 employing a Split Hopkinson Pres-
sure Bar (SHPB). The results showed an increase in
the wear resistance as the nano-reinforcement increased
[14].

Although there are a large number of investigation
on Al-based composite materials, it seems that there
are not sufficient references to deal with the fatigue
life of Al-based alloy reinforced by Nano-particles. In
designing particle composites, it is necessary to pre-
dict the failure behavior under static and fatigue load-
ings. Deriving a complete model of the components
in a structure composed of PMMCs is not computa-
tionally cost-efficient. Meanwhile, considering equiva-
lent properties for composites in the approach of con-
tinuum mechanics still neglects the interactions and
stress concentrations in the locations where particles
are connected to the matrix, hence an appropriate pre-
diction of the failure conditions is not provided. In
such structures, the use of multi-scale modeling con-
cept can prove very useful. In this approach, first, the
effects of particles and matrix on each other is inves-
tigated in the form of a unit cell using the concept
of micromechanics, and ultimately, the analysis results
are generalized to the entire structure through the con-
cept of continuum mechanics. In addition to offering
appropriate accuracies, this approach is also computa-
tionally cost-efficient. Hence, the same approach was
employed in the present study. To this end, first the
representative volume element (RVE) of the compos-
ite structure was modeled, and then its static and fa-
tigue behaviors were simulated with emphasis on the
particle-matrix debonding damage mode. The inter-
phase between the matrix and particles was considered
in the framework of damage mechanics based on bi-
linear cohesive zone model (CZM). Determining the
properties for the cohesive zone model associated with
the inter-phase between the particles and matrix was
carried out by matching the experimental results of a
silicon carbide reinforced aluminum matrix composite
with the aforementioned properties at a specific volume
fraction. Then, the fatigue results in this cell were as-
sessed using the experimental micromechanical results.

Finite element implementation of the mentioned
model was carried out using the User mat subroutine
written in ANSYS software package.

2. Micromechanical Modeling Using
Representative Volume Element

In the concept of micromechanical modeling using rep-
resentative volume element (RVE), a unit cell com-
prised of particles and the adjacent matrix as well as
a part of the adjacent particles is modeled, through
replication of which the considered composite is cre-
ated at a given volume fraction of the reinforcement
phase. On the two symmetric sides as shown in Figure
1, symmetric boundary conditions were imposed and
on the other two sides periodic boundary conditions
were imposed. On the plane perpendicular to the Y-
axis, the out-of-plane displacement (displacement in Y
direction) is zero, i.e. that unit cell is only allowed to
deform in the XZ plane. Similarly on the plane perpen-
dicular to the X-axis, displacement in the X direction
is zero and the unit cell is allowed to deform in the
YZ plane. This means that the unit cell will retain its
original cross-section under applied loading in the Z
direction. The bottom surface of the unit cell was con-
strained in all three directions, i.e. zero displacement in
x, y, and z direction. The top surface of the idealized
unit cell was subject to one of the following types of
loading boundary conditions (1) stress controlled con-
sisting of a uniform tensile traction of and (2) strain
controlled consisting of displacement compatible with
a uniform tensile unit strain.

These simplified boundary conditions were consid-
ered because the complex loading conditions at the d-a
interface precludes modeling of actual boundary condi-
tions. The complex loading condition at the d-a inter-
face is clear from the stress distributions In the present
study, the mentioned approach was used to investigate
the fatigue life of PMCs. In the created model, in order
to simulate the particle-matrix deboning failure mode,
which is one of the important failure modes in parti-
cle composites, three components were considered for
the unit cell: 1. matrix, 2. spherical particle, and
3. narrow-thickness interface volume between particle
and matrix was considered as a spherical membrane
around the particles.

In the present study, the particle shapes were con-
sidered spheres and the unit cell was considered a cube
with a particle at the center and 6 particles at the cen-
ter of its 6 faces. In this model, the dimensions of
the unit cell were selected so that the volume fraction
of the particles within the unit cell equals that of the
large-scale composite. Hence, the side length of the
cube (a) is obtained using Eq. (1):

a =
2

√√√√√
(
4× 4

3
πR3

)
Vf

(1)

where R is the radius of the particles and Vf is the
volume fraction of the particles in the composite.
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Considering the symmetric shape of the unit cell
with respect to the 3 intermediate planes running par-
allel to the faces, in order to optimize the finite element
model, it is sufficient to model one-eighth of the cube,
and then apply symmetry boundary conditions to the
three planes. The load condition in the present study
was considered as a periodic load condition in the Soft-
ware.

The final finite element model of one-eighth of the
cube along with the applied meshing is demonstrated
in Fig. 1.

Fig. 1. Final FEM element model for the one eighth
unit cell of mentioned particulate composite.

3. Simulating the Behavior of the Com-
ponents of the Unit Cell

Isotropic, linear elastic material behavior was used to
model the particles. Elasto-plastic behavior was con-
sidered for the matrix in order to take into account
the plasticity effects, for the failure behavior of which
Von-Mises yield criterion was used.

In order to model the static behavior of the ma-
trix, the elastoplastic model available in the ANSYS
software package was used. In this study, kinematic
stiffening behavior was used during the cyclic loading.
This behavior provides more accurate estimations com-
pared to isotropic behavior and takes into account the
Bauschinger effect.

Considering its inter-phase nature and stress con-
centration, the interface volume between particle and
matrix was modeled using a cohesive zone model
(CZM).

In case of static and fatigue loading, the CZM was
implemented into the ANSYS software package using
the available subroutine programmed by the user (the
user may). It should be noted the code for spheri-
cal particles should be written in spherical coordinates,
hence the normal direction in the structural relations

is along the radial direction in the local spherical co-
ordinates of each particle. Moreover, each particle’s
coordinate should match the respective local spherical
coordinates.

The interlayer element used in this study was the
eight-node solid element with limited-thickness, known
as Solid-Like Interlayer Element. The formulation of
this element is based on the formulations for isoperi-
metric hexahedral solid element; however, instead of
6 stress components, 3 interlayer stress components,
which are responsible for this phenomenon, are in-
cluded.

The interface phase between particles and matrix
was meshed using Solid185 element, which is compat-
ible with the cohesive element. A schematic of this
interlayer element is illustrated in Fig. 2.

Fig. 2. A solid-like interface element [15].

4. Cohesive Zone Model

The theory of Linear Elastic Fracture Mechanics
(LEFM) is one of the main methods for the analysis
of crack growth under brittle fracture conditions, like
debonding of the particle from the matrix. Despite
its many advantages, the disadvantages of these meth-
ods are as follows: First, a singularity is included at
the crack tip, which complicates the analysis. Second,
an initial crack is required for analysis, meaning that
crack initiation in a healthy state of materials may not
be predicted.

Employing the Cohesive Zone Model (CZM) can
prove useful in order to overcome the limits of frac-
ture mechanics, since use of CZM approach, in addi-
tion to tackling the above problems, does not require
re-meshing for analysis of crack growth as failure and
crack growth is modeled as a gradual decrease in the
stiffness of the interlayer element in this approach.

The CZM model is based on presenting a soften-
ing structural relation for the damaged zone around
the crack tip. The mechanism of this method for the
bilinear model is shown in Fig. 3.

According to Fig. 3, the relationship between stress
and strain (displacement) in the interlayer element is
initially of linear elastic type. Upon reaching a maxi-
mum value, which is the interlayer strength under the
respective modal ratio conditions, the gradual decrease
in the element stiffness is initiated, approaching zero
until complete failure.
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Fig. 3. Cohesive zone ahead of delamination tip and
Bi-linear constitutive equation [16].

Damage variable is defined as the ratio of stiffness
decrease to the initial stiffness at each strain state.
This parameter represents the damage growth in the
interlayer element and may assume values from 0 to
1. The parameter assumes the value of zero if the in-
terlayer element is located within the elastic region of
the structural relation, meaning that the elastic stiff-
ness of the element is equal to its initial value. As
the strain increases and reaches the damage initiation
point, the element enters the softening stage of the
structural relation, increasing the value of the damage
variable as Young’s modulus of the element decreases.
As the strains in the element increase to reach its ul-
timate point, the value of this parameter approaches
1; consequently, Young’s modulus decreases as well as
the (tensile) stress of the element until the zero value
are reached. As a result, the crack grows as long as the
length of the element, and new crack areas are formed.
It should be noted that at each strain state, loading
and unloading occurs along the elastic line with the
current stiffness. However, since normal compressive
stress does not affect crack growth, it is usually as-
sumed the corresponding stiffness decrease is not ap-
plied.

5. Simulating Particle Debonding from
Matrix under Static Loading:

5.1. Structural Relations of Cohesive Element

Balzani and Wagner (2008) presented a powerful solid-
like interlayer element based on CZM for modeling the
interlayer debonding in layered composite materials
under combined loading [15].

In the present research, the cohesive interlayer ele-
ment used for static loading was based on the structural
models presented by Bao and his coworkers [29], which
are explained in the following lines.

According to Fig. 3, under any loading mode, the

damage is initiated at the point where the stress in
the elastic interlayer element has reached its ultimate
value. Hence, regarding this definition, the correspond-
ing strains of the damage initiation point, based on the
strength of the respective pure modes, are defined ac-
cording to Eq. (2):

ε0n =
σ℧
n

K
, γ0

3n =
τU3n
K

, γ0
tn =

τutn
K

(2)

where K is the initial stiffness of the interlayer ele-
ment in the stress-strain space, ε0n represents the nor-
mal interlayer strain, and γ0

3n and γ0
tn indicate the out-

of-plane shear strains in the interlayer element corre-
sponding to the damage initiation point.

In modeling the interlayer debonding growth
through CZM, according to Griffith theory, the re-
quired energy for the destruction of elements and crack
growth, i.e. the area bounded by the graph of struc-
tural relationships in the stress-displacement space,
equals the critical strain energy release rate (fracture
toughness) of the respective loading mode [17].

Hence, according to Fig. 3 as well as the bilinear
stress-strain relation of the interlayer zone, the ulti-
mate strain corresponding to the fracture of the inter-
layer element in each pure mode is obtained using Eq.
(3):

εfn =
2Glc

h0σ0
n

, γf
sn =

2Gllc

h0τ0sn
, γf

tn =
2Glllc

h0τ0tn
(3)

where h0 is the interlayer thickness, and Glc, Glllc,
and Gllc represent the facture toughness correspond-
ing to single loading modes I, II, and III, respectively.
Since in most structures, crack initiation and growth
are much more likely to occur under combined modes
than single modes, development of an interlayer formu-
lation for combined loading modes is inevitable.

In the employed formulation of this research,
Young’s modulus of the interlayer element for all load-
ing modes was considered similar. Moreover, the ul-
timate strength in shear modes was also considered
equal, i.e. τ0tn = τ0sn = τ0.

In order to present the formulation of the structural
relation for combined loading modes, effective strain
parameter is defined as Eq. (4):

εm =
√
< εn >2 +γ2

sn + γ2
tn (4)

where the operator <>, known as the McCauley paren-
thesis, is defined according to Eq. (5):

< x >=

 0 x ≤ 0

x x > 0
(5)

According to the definition of the operator <>, if
the normal strain assumes negative values, Eq. (4) is
reduced to Eq. (6):

γshear =
√

γ2
sn + γ2

tn (6)
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In order to separate the combined loading modes
from single modes, if the normal strain is positive, the
parameter β is defined as the mode combination ratio
according to Eq. (7):

β =
γshear
εn

(7)

In the present study, the sum of squared stresses
was used as the criterion in order to predict the ini-
tiation location of interlayer debonding damage under
the combined mode, which is presented in Eq. (8) [18]:(

< σn >

σ0
n

)2

+

(
τsn
τ0sn

)2

+

(
τtn
τ0tn

)2

= 1 (8)

By combining Eq. (8) with Eqs. (2) to (7), the
equivalent strain corresponding to the initiation loca-
tion of interlayer debonding under combined mode is
obtained according to Eq. (9):

ε0m =


ε0nγ

0

√
1 + β2

(γ0)2 + (βε0n)
2
εn < 0

γ0εn ≤ 0

(9)

where ε0n and γ0, respectively, represent the normal
strains and out-of-plane shear strains at the damage
initiation location in the interlayer element correspond-
ing to the opening and pure shear modes, which are
obtained according to Eq. (2).

Most criteria used in literature studies for predic-
tion of interlayer debonding growth (complete inter-
layer damage) under combined loading mode are based
on strain energy release rate and fracture toughness.
In this study, the interlayer debonding growth was as-
sessed using the well-known B-K criterion presented by
Keane and Benzengagh [19].

The B-K criterion is obtained based on the fracture
toughness in modes I and II, and additionally, in a gen-
eral case and in the presence of all the three modes, the
parameter η, which was obtained through Mixed-Mode
Bending (MMB) experiment, are presented according
to Eq. (10):

Glc + (GUc −Glc)

(
Gshear

GT

)η

= Gc

GT = Gl +Gshear

(10)

In this criterion, the toughness fracture is assumed
to be equal in both pure shear modes III and II; how-
ever, since the fracture toughness of the former case is
higher, a factor of safety is considered [15]. Moreover,
since the cohesive zone element does not assume any
differences between shear modes II and III, employing
this criterion is reasonable.

By substituting Eqs. (3) to (7) into Eq. (10), the
relationship between the effective strain corresponding

to the interlayer full debonding under combined load-
ing is obtained according to Eq. (11) as:

εfm =


2

Kh0ε0m

[
Glc + (Guc −Glc)

(
β2

1+β2

)η]
εn > 0

γf
m εn < 0

(11)

where γf
m is the shear strain at the end of the damage

corresponding to the pure shear (slippage) mode γf
m,

obtained using Eq. (3).
Among various factors, irreversibility of the damage

parameter of the interlayer element should be of con-
cern. To this end, a state variable which guarantees
the maximum effective strain in any stage of loading is
defined according to Eq. (12) [15]:

ε∗k = max{ε∗k−1, εm} (12)

where indices k and k− 1 are, respectively, the current
and last loading steps. Moreover, εm is the current ef-
fective strain. The meaning of the state variable ε∗m,
as well as the damage parameter d, may be observed
in Fig. 4.

Fig. 4. Cohesive law for mixed-mode delamination
with linear softening and maximum effective strain
concept [15].

Based on the aforesaid explanations, the stress-
strain relation in the structural equation is presented
according to Eq. (13):

σ = Cε, σ = {τsn, τtn, σn}T , ε = {γsn, γtn, εn}T

C =


Klε∗m ≤ ε0m

(1− d)KL+ dKlcε
0
m < ε∗m < εfm

Klcε
∗
m ≥ εfm

(13)

lc =

 0 0 0
0 0 0

0 0
< −εn >

−εn


where C is the reduced interlayer stiffness matrix, and
I is the identity matrix of order 3.
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According to Fig. 4, the explicit relation of damage
parameter for structural relations of the bilinear type
under general combined mode is simply obtained using
Eq. (14):

d =
εfm(ε∗m − ε0m)

ε∗m(εfm − ε0m)
(14)

It should be noted that employing ε∗m into Eqs. (13)
and (14) meets the irreversibility condition associated
with damage parameter in the interlayer element.

5.2. Determining the Model Constants under
Static Loading

In order to assess the proposed approach, the static
results reported by Chawla and Shen [7] were used be-
cause of the similarity between their materials and the
present study’s material.

As mentioned in Section 3, elastic behavior was con-
sidered in order to model the particles. Since silicon
carbide was considered for the particles used in the
present study, the required properties for which, e.g.
Young’s modulus and Poisson’s ratio, are given in Ta-
ble 1. Additionally, elastoplastic behavior was consid-
ered in order to model the metal matrix. The respec-
tive elastoplastic properties for the aluminum matrix
under study are presented in Table 2.

In Table 2, E is Young’s modulus, ν is the Pois-
son’s ratio, and Sy is the yield strength. Moreover, Ep

represents the slope of the plastic region in the stress-
strain graph obtained in the uniaxial tensile test for
aluminum. As shown in Fig. 5, according to the behav-
ior of the plastic region of the tested aluminum, linear
approximation for the plastic region is convenient.
Table 1
Mechanical properties of SiC particle in Al-Cu-Mg (2080)/SiC
composite [7].

E (GPa) ν
410 0.19

Table 2
Mechanical properties of Al matrix in Al-Cu-Mg (2080)/SiC
composite [7].

E (GPa) ν Sy(MPa) EP (MPa)
75 0.33 474 2033

However, the identification of CZM specifications
associated with the particle-matrix inter-phase was car-
ried out through matching the experimental results of
silicon carbide reinforced aluminum matrix composite
at a specific volume fraction. To this end, by consider-
ing plasticity behavior for the matrix with given con-
stants (Table 2), the final properties of the inter-phase
is obtained through trial and error in the software, such
that the software-produced equivalent stress-strain dia-
gram matches that of the experimental diagram for the

mentioned composite under displacement-controlled
uniaxial tensile loading. For this purpose, first, the
initial slope of the CZM graph is determined such that
the initial slope of the software-produced graph which
matches the experimental graph. Additionally, the
strength of the CZM is selected such that the software-
produced results on the initiation of stiffness decrease
caused by damage matches the experimental diagram.
Ultimately, the facture toughness is obtained such that
the rest of the stiffness decrease diagram caused by
damage as well as the ultimate failure of the composite
sample is predicted.

Fig. 5. Tensile behavior of an Al matrix in Al-Cu-Mg
(2080)/SiC composite [7].

The described procedure was applied to a compos-
ite of 20 percent particle volume fraction with particle
radii of 2.5 microns in ANSYS software package us-
ing the prepared code, and ultimately the properties
were obtained according to Table (3). The interlayer
element thickness was considered 0.0001 [20].

Table 3
Interface properties for cohesive zone model in Al-Cu-Mg
(2080)/SiC composite.

K
(GPa)

σ0

(MPa)
τ0
(MPa)

Glc

(N/mm)
Gllc

(N/mm) η

75 1450 1450 0.15 0.15 1.0

Considering the isotropic nature of the matrix, it
should be noted that the fracture toughness for modes
I and II are equal, and the exponential parameter of
B-K criterion is considered 1.

6. Fatigue Loading

6.1. Prediction of Fatigue Damage in the Ma-
trix

During high-cycle loading and under small stresses, al-
though plasticity may not occur, fatigue behavior ad-
versely affects the elastic properties of the material.
Hence, in order to appropriately predict the fatigue life
of the composite, in addition to taking into account the
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damage growth in the matrix-particle inter-phase, it is
also necessary to consider fatigue damage growth in the
matrix. To this end, considering the isotropic behavior
of the matrix, its damage behavior may be described
using a damage variable, which again describes the de-
cline in Young’s modulus as well as the shear modulus.
This means that by defining the ratio of the decline in
the stiffness to the initial stiffness in the current state
as the damage variable, the reduced stiffness in a given
state can be obtained using the following relation:

ER = (1−D)E0, GR = (1−D)G0 (15)

where E0 and G0 are the initial Young’s and shear
moduli of the matrix, respectively, and D is the dam-
age parameter. This parameter represents the damage
growth at a given point and may assume values be-
tween 0 and 1.

In order to predict the damage growth during fa-
tigue loading, typically, the growth rate of the damage
variable with respect to the load cycles is described
based on loading parameters, i.e. stress, strain, and
energy. In this study, it was assumed that the growth
rate of the fatigue damage with respect to loading cy-
cles N was governed by the following energy-based
quasi-experimental relation [21]:

dD

dN
= c

(
∆WD

WD
0

)m

(16)

where c and m are empirical constants, and ∆WD rep-
resents the changes in the strain (deformation) energy
per unit volume of the sample in each loading cycle at
the given integration point. The strain energy density
is obtained through subtraction of the hydrostatic por-
tion of the strain energy density from the total strain
energy density.

The hydrostatic strain energy density is obtained
using Eq. (17):

WH =
1

2
σ̄ε∗11 +

1

2
σ̄ε∗22 +

1

2
ε∗33 (17)

where σ̄ is the hydrostatic stress and ε∗ij are its result-
ing strains. Hence:

σ̄ =
(σ11 + σ22 + σ33)

3

ε∗ij =
(1− 2ν)σ̄

E

consequently:

WH =
3(1− 2ν)σ̄2

2E

Moreover, WD
0 is the maximum strain energy den-

sity bearable by the material under uniaxial loading at
the current moment, which is defined as Eq. (18):

WD
0 =

(1 + ν)

3

(σR
Ut)

z

ER
(18)

where σR
Ut is the residual strength at the current mo-

ment. Therefore, in order to determine the critical
strain (deformation) energy density WD

0 , a criterion
should be considered for residual strength. In the
present study, it was assumed the residual strength is
proportional to the residual stiffness. This is a valid
assumption since the decrease in both stiffness and
strength is associated with the increase in the damaged
area in the concept of continuum damage mechanics.
Additionally, considering such a valid assumption helps
to reduce the parameters and required experiments for
model specification. Therefore:

σR
UT = (1−D)σ0

UT (19)

The quantity WD
0 is then obtained according to Eq.

(20):

WD
0 =

(1 + ν)

3
(1−D)

(σ0
Ut)

z

E0
(20)

where σ0
Ut is the initial tensile strength of the matrix.

Ultimately, in order to determine the fracture time,
a failure criterion should be employed. In this study,
complete damage was considered as the corresponding
density of critical distortion strain energy at a given
time, which is also known as Von-Mises maximum dis-
tortion strain energy criterion. The critical Von-Mises
stress is equal to the residual strength. As mentioned
earlier, the considered criterion for matrix failure was
also Von-Mises criterion, which is appropriate for duc-
tile metals.

6.1.1. Specifications of the Matrix Constant un-
der Specific Loading

The changes in strain energy under force-controlled
cyclic loading with fixed maximum uniaxial stress σ11

and load ratio almost equal to zero is obtained accord-
ing to Eq. (21).

W =
(1 + ν)

3

(σ11)
2

E0(1−D)
(21)

By substituting Eq. (21) into Eq. (16), the growth
rate of the fatigue damage is then obtained according
to Eq. (22) as:

dD

dN
= c

(
σ11

(1−D)σ0
Ut

)2m

(22)

By integrating Eq. (22) with respect to the changes
in the damage variable on the interval 0 to D, the fol-
lowing relation is achieved:

c

(
σ11

σ0
Ut

)2m

N =
1

2m+ 1
(1− (1−D∗)2m+1) (23)
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The dimensionless stiffness after N cycles is calcu-
lated using Eq. (24):

ER

E0
=

(
1− (2m− 1)c

(
σ11

σ0
Ut

)2m

N

)( 1
2m+1 )

(24)

Here, considering the force-controlled loading at
given stress σ11, the fatigue life corresponds to the case
where the residual strength reaches the applied stress.
Hence, the ultimate value of the damage variable right
before fracture in the sample is obtained using the fol-
lowing relation:

D∗ =
σUt − σ11

σUt
(25)

Therefore, by substituting Eq. (25) into Eq. (23),
the ultimate lifetime is determined using the following
relation:

Nf =

(
1−

(
σ11

σ0
Ut

)2m+1
)

(2m+ 1)c

(
σ11

σ0
Ut

)2m (26)

By comparing Eqs. (24) and (26), Eq. (27) is
achieved, which describes the relation between dimen-
sionless loading cycles and dimensionless Young’s mod-
ulus under tensile loading:

N

Nf
=

(
1−

(
ER

E0

)2m+1
)

(
1−

(
σ11

σUt

)2m+1
) (27)

Therefore, having the fatigue results associated
with the stress-life or stiffness decrease with respect
to loading cycles under pure tensile strength for the
considered material, the model constants can be deter-
mined using Eqs. (26) and (27).

To this end, with regards to the stress-life diagram
for the aluminum presented in the study of Chawla
and Shen (2001), applying curve-fitting on the stress-
life results as well as the life relation as a function of
stress (Eq. 26), the constants related to matrix fatigue
were obtained as 0.00013 and 3 for the coefficient c and
exponent m in the relation of matrix fatigue damage
growth rate. Note that the ultimate strength of the
mentioned aluminum was 548MPa.

6.2. Simulation of Particle-matrix Debonding

In Sections 4 and 5, CZM was introduced in order
to predict the particle-matrix debonding failure mode
during static loading. In this section, aiming at growth
prediction of the aforementioned damage under cyclic

loading, the appropriate, complementary structural
equations based on continuum damage mechanics are
presented. In this approach, the growth rate of the
damage in the particle-matrix interphase with respect
to the fatigue loading cycles is based on a structural
equation. Evidently, under high-cycle loading, damage
and consequently crack growth are caused by periodic
loadings applied at a high number of cycles. Hence,
regarding the complex nature of fatigue damage, it
is necessary to derive the model constants based on
appropriate fatigue experiments so as to validate the
model for different samples.

Generally, the proposed models regarding this sub-
ject are categorized into two general groups:
Group 1: The models in which the fatigue damage
growth is considered fully independent and is accord-
ing to the framework of damage mechanics based on
appropriate assumptions [22, 23].
Group 2: The models which relate the fracture me-
chanics, specifically Paris’ law, to damage mechanics
in order to formulate the fatigue growth rate in cohe-
sive element [24, 25].

Since models based on damage mechanics provide
more accurate estimations of the damage growth due to
their more accurate physical model, the present study
decided to use them, specifically the model proposed
by Turon et al., in order to simulate the damage growth
in the interphase of metal matrix composites [27].

6.2.1. The Structural Relations for Cohesive El-
ement

In addition to interlayer strength and fracture tough-
ness, the initial stiffness of the structural relation, as
well as the length of the cohesive zone, are among the
most influential parameters affecting the behavior of
the interlayer element. So far, various approaches have
been proposed for selecting the initial stiffness of the
interlayer element, among which Daudeville et al. [26]
described the stiffness in the stress-displacement space
based on the thickness of the interlayer element accord-
ing to Eq. (28):

Kn =
En

h0
, Ksn =

2Gsn

h0
, Ktn =

2Gth

h0
(28)

where E and G are elastic stiffness of the rich resin
zone, which may be assumed equal to that of the ho-
mogeneous layer.

In order to accurately assess the interlayer debond-
ing growth, a sufficient number of interlayers should
exist along the length of the cohesive zone around the
crack tip. Hence, in order to achieve the optimal num-
ber of required elements for modeling, it is necessary to
determine the length of the cohesive zone, which is the
distance from the crack tip to the point with maximum
cohesive stress, along with the minimum number of in-
terlayer elements in this zone. Moreover, an accurate
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estimation of this parameter is highly important in the
appropriate prediction of interlayer debonding caused
by high-cycle loading [26]. To this end, Turon et al.
conducted a comprehensive study on the length of the
cohesive zone, according to the results of which various
analytical solutions exist for estimating the length of
the cohesive zone under fully developed conditions in
different samples. However, the structure of all these
relations are similar and are only different in a coeffi-
cient. This relation is in the form of Eq. (29) [26]:

lcz = (M)Em
Gc

(τc)2
(29)

In Eq. (29), E is Young’s modulus along the thickness
direction, Gc is the fracture toughness, and τc is the
strength of the interlayer zone. Additionally, parame-
ter M assumes different values for different models of
the cohesive zone. For instance, Bao and Sou obtained
0.73 for the bilinear cohesive zone model [28].

It should be noted that Turon et al. [24] substituted
the relation for the length of the cohesive zone with
the analytical solution proposed by Rice [29]. Rice’s
estimation is based on the assumption that stress lin-
early varies with the distance from the crack tip within
the cohesive zone. Numerical results reveal that this
assumption does not hold true. The length of the cohe-
sive zone obtained by Bao and Suo [28] was calculated
for the bilinear CZM, which is in agreement with the
employed CZM model of this study.

Hence, in the present study, the length parameter
of the cohesive zone in relations was considered accord-
ing to the solution of Bao and Sou as the following Eq.
[28]:

lcz = 0.732
EmGc

(τ0)2
(30)

Regarding the length of the cohesive zone under
fully developed conditions, it should be noted that it is
considered the length at which the strain energy release
rate of the crack approaches the fracture toughness of
the materials, meaning that the crack tip is fully dam-
aged and is on the verge of growing.

Obviously, the crack area growth rate in a stan-
dard sample with a fixed width can be described with
respect to the crack length growth rate according to
Eq. (31):

dA

dN
= b

da

dN
= bc

(
∆G

Gc

)m

(31)

where m and c are the constants in Paris’ law for crack
length growth rate, b is the length of the crack front
(width of the sample), ∆G is the changes in the strain
energy release rate of the cohesive element during the
current fatigue cycle, the concept of which is demon-
strated in Fig. 6, and Gc is the fracture toughness, i.e.
the total area bounded by the graph of cohesive zone.

Fig. 6. Changes in the strain energy release rate of
the cohesive zone element during the fatigue cycle [25].

In order to relate the crack area growth rate with
the damage growth rate, Turon et al. proposed a con-
cept known as damaged area, which is a function of
element damage variable and its associated elements
in the cohesive zone. According to Eq. (32), it was as-
sumed that the growth rate of the damaged area during
fatigue loading is similar to the crack area growth rate
in Paris’ law, and is hence a function of strain energy
release rate of the cohesive element during the fatigue
cycle:

∂Ad

∂N
= Aε

[
C

lcz

(
∆G

Gc

)m]
(32)

where Ad is the damaged area of the element, Aε is
the cohesive element area in the interlayer debonding
plane, and lcz is the length of the formed cohesive zone
normal to the crack front.

According to the abovementioned relation, if the
damaged area of the element (Ad) is appropriately de-
fined so that the proposed quasi-Paris’ law holds true,
the damage variable growth rate during fatigue loading
may be calculated for the cohesive element using the
following relation:

∂d

∂N
=

∂d

∂Ad

∂Ad

∂N
(33)

However, it is still necessary to deal with the relation
for the damaged area in the cohesive element. Addi-
tionally, Turon et al. used the concept of (irreversible)
dissipated energy. They assumed the ratio of the dam-
aged area of the element to the total area of the element
at each state of damage variable is equal to the ratio of
the dissipated energy Ξ during the damage process to
the critical energy release rate Gc [28]. This is demon-
strated in Fig. 7. Hence, we may write:

Ad = Aε
Ξ

Gc
= Aε

[
1− (Gc − Ξ)

Gc

]

= Aε

[
1− τε∗m

τ0m

] (34)

Where ε∗m is the maximum effective strain during each
loading stage.
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Fig. 7. The concept of dissipated energy in linear
softening rule [25].

By substituting the stress-strain relation into Eq.
(34), and by calculating ε∗ with respect to damage vari-
able d using Eq. (14), the final relation for the dam-
aged area with respect to the element damage variable
is obtained according to Eq. (35):

Ad = Aϵ

[
dε0m

(1− d)εfm + dε0m

]
(35)

As shown, in case of d assumes zero, the damaged
area is also zero, and as d approaches 1, the damaged
area equals the element area.

By differentiating the recent relation, it can be
proved that the growth rate of the damage variable
d with respect to the damaged area is obtained as:

∂d

∂Ad
=

1

∂Ad

∂d

=
1

Aε

[
(1− d)εfm + dε0m

]2
εfmε0m

(36)

By substituting Eqs. (32) to (36) in Eq. (33), the
growth rate of the damage variable in the cohesive el-
ement under fatigue loading may be calculated as:

∂d

∂N
= (37)


[(1− d)εfm + dε0m]2

εfmε0m

[
C

lcz

(
∆G
GC

)m]
for Gmax ≥ Gth

0 otherwise

where Gth is the strain energy release rate of the cohe-
sive element on the verge of fatigue initiation, and C
and m are the Paris’ law constants obtained through
fatigue experiments conducted on standard samples or
through the software adjustment under special condi-
tions.

6.2.2. Determining the Model Constants under
Fatigue Loading

In order to determine the fatigue constants associ-
ated with the particle-matrix interphase, the stress-life

results for an aluminum matrix composite reinforced
with 20 percent volume fraction SiC particles were ob-
tained at three stress levels. Then, the constants c
and m in the relation of fatigue damage growth for
the particle-matrix interphase were obtained through
software trial and error so that the experimentally ob-
tained fatigue life is predicted by software analysis for
the mentioned three stress levels, which were consid-
ered 240, 280, and 300MPa. The experimentally ob-
tained average fatigue lives for these three stress levels
were 3350000, 150000, and 60000 cycles, respectively
[7].

According to described procedure, the trial and er-
ror was carried out and the exponent constant m, as
well as the coefficient constant c in the relation of fa-
tigue damage growth rate, were obtained as 3.5 and
3.15mm/cycle, respectively.

7. The Results of FEM Analysis

7.1. Ecstatic Loading

Using the relations obtained in Section 5, the stress-
displacement diagram of the structural equation for the
considered material is presented in Fig. 8.

Fig. 8. Interface phase traction and separation of Al-
Cu-Mg (2080)/ SiCp composite.

In Fig. 9, the numerical results of equivalent stress-
strain diagram for the considered composite with the
given properties of Table 3 are presented along with
the experimental results.

As shown in Fig. 9, the presented constants of Ta-
ble 3 appropriately fit the experimental results. More-
over, the implemented model was able to appropriately
predict the ultimate failure in the part. Correct pre-
diction of the mechanical behavior of the metal matrix
composite is not possible without taking into account
the interphase damage. Figs. 10 and 11, respectively,
illustrate the gradual growth of the equivalent plas-
tic strain in the matrix and the damage growth in the
matrix-particle interphase.
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Fig. 9. Tensile behavior of an Al-Cu-Mg (2080)/ SiCp
composite with particle volume fraction 20%.

As demonstrated in Figs. 10 and 11, first, plasticity
in the matrix occurs at the connection of the middle
particle with the matrix, and as the plastic strain grows
in the matrix, the damage is initiated in the interphase
of the same particle-matrix location along the loading

direction and continues. This is in good agreement
with experimental results [20].

Damage initiation along the loading direction is rea-
sonable in physical terms considering the formation of
the debonding mode. It should be noted that the dam-
age in the interphase indicates crack growth between
the particle and matrix.

In order to validate the performance of the pro-
posed method in predicting other circumstances, using
the same material constants presented in Section 5, the
same composite but with a particle volume fraction
of 10 percent was numerically analyzed, the results of
which are presented in Fig. 12.

In order to assess the sensitivity of the model and
the considered composite to their material parameters,
the results of equivalent stress-strain diagram for the
considered composite with 20 percent particle volume
fraction at different interlayer strength and fracture
toughness of the interphase are demonstrated in Fig.
13.

Fig. 10. The results of the gradual growth of equivalent plastic strain in the matrix for aluminum matrix
composite with 20% volume fraction reinforcement SiC particles under uniaxial stress.
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Fig. 11. The results of the gradual growth of damage in matrix and particle interface phase for aluminum
matrix composite with 20% volume fraction reinforcement SiC particles under uniaxial stress.

Fig. 12. Tensile behavior of an Al-Cu-Mg (2080)/
SiCp composite with particle volume fraction 10%.

Regarding the effect of particle sizes on these prop-
erties, this analysis somehow demonstrates the effect of
particle sizes on the results. According to the studies
of Chawla and Shen [7], increasing the particle sizes
at a fixed volume fraction leads to a decrease in the
strength as well as fracture energy of the composite.
This effect is predictable as the interlayer strength and

fracture toughness is decreased.

Fig. 13. Evaluate the effect of physical parameters
on the results of a static diagram stress-strain for 20%
volume fraction.

As shown in Fig. 13, as the interlayer fracture
toughness and strength increases, the damage in the
sample is slowed down, causing an upward shift in the
diagram. Additionally, the ultimate strength of the
sample is increased. Note that according to this figure,
the model is more sensitive to the interlayer strength.
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7.2. Fatigue Loading

According to the explanations given in Section 6.1.1,
the constants associated with fatigue damage growth
in the matrix are obtained using the results of a fatigue
test on the pure matrix subject to uniaxial tensile fa-
tigue loading. In Fig. 14, the prediction results of the
proposed model, as well as the experimental results,
are presented.

Fig. 14. The fatigue stress-life diagram of the uniaxial
tensile test on the aluminum matrix.

As demonstrated in Fig. 14, the considered model
is able to appropriately simulate the experimental be-
havior of fatigue damage growth.

In this section, in order to validate the model un-
der fatigue loading, the predicted fatigue life results by
software analysis are compared to experimental results
at other stress levels as well as another volume faction
(10 percent). The comparison results are presented in
Fig. 15 and 16.

Fig. 15. Comparison of the fatigue life results ob-
tained through software prediction and experimental
results for a sample with 20 percent particle volume
fraction.

Fig. 16. Comparison of the fatigue life results ob-
tained through software prediction and experimental
results for a sample with 10 percent particle volume
fraction.

The particles volume fraction is one of the impor-
tant parameters regarding PMMCs as it significantly
affects the strength and fatigue behavior of the com-
posite. In this section, in order to assess the perfor-
mance of the implemented model, the effect of particle
volume fraction in the prediction of fatigue life is com-
pared for two cases where 10 and 20 percent particle
volume fractions are used. The comparison results are
presented in Fig. 17.

Fig. 17. Comparing the effect of particle volume frac-
tion in predicting the fatigue life using the implemented
model.

As shown, by increasing the particle volume frac-
tion from 10 to 20 percent, the fatigue life of the metal
matrix composite at a fixed maximum stress level is in-
creased. This is in agreement with experimental results
[7].

Hence, the implemented model is appropriately ca-
pable of taking into account the effect of particles vol-
ume fraction in the prediction of fatigue life.
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8. Conclusions and Results

In the present study, the fatigue life of PMMCs was
investigated using a micromechanical modeling ap-
proach. To this end, a representative volume element of
the composite with its respective volume fraction was
considered, which included three components; namely
the matrix, the particle, and the inter-phase between
particles. In order to more accurately predict the be-
havior of damage growth in the considered composite,
the inter-phase was modeled using the cohesive zone
model (CZM), and the matrix behavior was modeled
using destructive elastoplastic behavior. In order to
model the behavior of damage growth in the inter-
phase, a powerful model for fatigue damage growth,
the performance of which was previously validated for
multilayer composites, was implemented through the
material code written in the subroutine (User mat) of
ANSYS software package. Moreover, the behavior of
fatigue damage growth in the matrix was implemented
in ANSYS using an energy-based model using the User
mat subroutine. It should be noted that the mentioned
micromechanical approach was first used for the pre-
diction of fatigue damage growth in metal matrix com-
posites.

Then, in order to assess the performance of the
implemented model, the fatigue damage growth in an
aluminum matrix composite reinforced with SiC par-
ticles was investigated. To this end, in order to deter-
mine the static constants of the implemented cohesive
model, the results of static uniaxial tensile loading on
the mentioned composite with 20 percent particle vol-
ume fraction was used. Then, the static part of the
model was validated through predicting the behavior
of static damage growth of the composite with 10 per-
cent particle volume fraction.

To determine the fatigue constants of the matrix,
the experimental results of stress-fatigue life diagram
for pure aluminum were used, through which the re-
spective constants were derived. Then, the fatigue con-
stants of CZM associated with damage growth in the
interphase were derived through the stress-fatigue life
results of the composite with 20 percent particle vol-
ume fraction at three different stress levels.

Ultimately, in order to validate the performance of
the model in fatigue life prediction of PMMCs under
other conditions, the fatigue life was investigated for
different stress levels and another particle volume frac-
tion. The results were then compared with the corre-
sponding experimental results.

Although the implemented model uses similar ma-
terial constants for the interphase at different particle
volume fractions, it is able to predict different results
for different particle volume fractions. For instance,
increasing volume fraction from 10 to 20 percent in-
creases the composite strength, while decreasing the
growth in length. This is also confirmed by experimen-

tal results [7]. Hence, the effects of volume fraction can
be easily observed on the results of the model.

Analysis of the model results with respect to model
parameters revealed that the CZM is more sensitive to
the parameter of interlayer strength. Hence, utmost
care must be taken in determining this constant.

Although the model employed a few tests in de-
termining the constant models, the results indicate it
was also able to appropriately predict the fatigue life of
PMMCs under other conditions. The results obtained
from numerical simulations indicate that the proposed
model is capable of taking into account the effects of
volume fraction in predicting fatigue life. Hence, one
of the important features of the model is its ability to
take into account the effects of volume fraction in the
prediction of fatigue life.
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