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Abstract

This work aimed to study the thermo-electro vibration of a piezoelectric
micro-plate resting on the orthotropic foundation. To catch the small-scale
effects of the structure, couple-stress theory was employed. Motions of the
structure were modelled based upon different shear deformation theories
including exponential, trigonometric, hyperbolic, parabolic, and fifth-order
shear deformation theories. These modified shear deformation theories
are capable of considering transverse shear deformation effects and rotary
inertia. Equation of motions are derived with Hamilton’s principle and to
solve these equations an analytical approach is applied. Besides, Effect
of different boundary conditions including SSSS, CSSS, CSCS, CCSS and
CCCC are investigated. The present results are validated with the previously
published results. In the result section, the influences of various parameters
such as increasing temperature, boundary conditions, foundation parameters,
thickness ratio, aspect ratio, external voltage and length scale on the natural
frequencies of the plate are illustrated in detail.

Nomenclature
a Length of the plate σij Normal stresses
b Width of the plate mij Couple stress tensor
h Thickness of the plate χij Curvature tensor
E Young’s modulus Ei Electric field
ν Poisson’s ratio D Electric displacement
ρ Mass density G Shear modulus
u Displacement in the x direction ℓ Material length scale parameter
v Displacement in the x direction F Axial force
w Displacement in the x3 direction Kgx Shear foundation parameter
T Kinetic energy of the plate Kgy Shear foundation parameter
U Strain energy of the plate Kw Winkler constant
W Work done by external forces cd Damping constant
δ Variation operator θ Angel of orthotropic function
ω Natural frequency of the plate V0 External electric voltage
εij Normal strains Φ Electric potential
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1. Introduction

Because of the excellent properties of piezoelectric ma-
terials, the micro-plates that are made of these mate-
rials have been used in a wide variety of fields such as
ultrasonic, piezoelectric transducers, transistors, and
many devices. Piezoelectric materials due to their elec-
tromechanical coupling effect improve static and dy-
namic behaviour of structures; because when these ma-
terials are under mechanical loads, they can produce
electrical fields and when they are in electrical fields,
they can produce mechanical deformations. Based on
the experimental observations, it is evident that the
elastic properties of piezoelectric materials are size de-
pendent. For this reason, studying these materials in
nano-micro-scale is of crucial importance. There have
been many researches about piezoelectric materials in
recent years [1–4].

Both experimental and molecular dynamics sim-
ulation results have shown that the scale effect has
a significant role in nano- microstructures. Because
the experimental and molecular dynamics simulation
is computationally expensive and time-consuming, one
alternative is to utilize the available knowledge of clas-
sical continuum mechanics. The classical continuum
theory cannot explain the scale effect. The scale ef-
fect is the phenomenon that the size of the structure’s
component is comparable to the size of its material con-
stituent so that in micro-scale the stiffness and strength
of materials are larger than those in the macro-scale.
As the scale effect is ignored in conventional contin-
uum theories, these theories need to be developed for
microstructures. Many theories for nano-micro-scale
structures have been proposed such as nonlocal elastic-
ity theory [5–7], strain gradient theory [8], and couple-
stress theory [9]. The essence of the nonlocal elasticity
theory is that the stress field at the reference point
in an elastic continuum depends not only on strain at
that point but also on the strain at every other point
in the domain. Recently, the free vibration analysis of
functionally graded rectangular nano-plates are anal-
ysed by khorshidi et al. [10]. The nonlocal elas-ticity
theory is used in their research. Liu et al. [11] studied
the thermo-electro-mechanical free vibration of piezo-
electric nano-plates using nonlocal theory. Li et al.
[12] analysed buckling and free vibration of magneto-
electro-elastic nano-plate resting on Pasternak founda-
tion based on nonlocal theory. Fleck and Hutchinson
[13] proposed strain gradient theory. In this theory,
the second-order deformation tensor separated stretch
gradient tensor and rotation gradient tensor. Ansari
et al. [14] studied free vibration of functionally graded
micro-beams based on strain gradient theory. Mindlin
and Tiersten [15] proposed couple stress theory. Ac-
cording to this theory, the strain and curvature tensor
are asymmetric. To consider the nonlocal effects in the
governing equations, the material length scale param-
eters (MLSPs) must be taken into account. Classical

couple-stress theory besides the lame’s constants, con-
tains two additional material length scale parameters.
In this theory, rotations depend on displacement. The
modified couple stress theory that contains only one
material length scale parameter proposed by Yang et
al. [16]. Additionally, in this theory contrary to classi-
cal couple-stress theory strain and curvature tensor are
symmetric. Lei et al. [17] carried out a size-dependent
functionally graded micro-plate model using a mod-
ified couple stress theory requiring only one MLSP.
The proposed model uses for both shear and normal
deformation effects by a parabolic variation for all dis-
placements across the thickness. Shojaeefard et al. [18]
investigated the free vibration and buckling of micro
FG porous circular plate subjected to a nonlinear ther-
mal load. The governing equations were derived using
the modified couple-stress theory. Farzam and Hassani
[19] analysed thermal and mechanical buckling of func-
tionally graded carbon nanotube reinforced composite
plates based on modified couple-stress theory. A re-
fined hyperbolic shear deformation theory was used for
buckling analysis, which satisfies free transverse shear
stress conditions on the top and bottom surfaces of
plate without a need for shear correction factor.

Classical Plate Theory (CPT) or Kirchhoff plate
theory and First-order Shear Deformation Theory
(FSDT) are well-known theories and are widely used
for the analysis of nano-micro plates. CPT leads to
accurate results for thin plates, while as the transverse
shear deformation is neglected in this theory, when the
thickness of the plates increases the accuracy of re-
sults decreases. In FSDT influence of rotary inertia
and transverse shear deformation is considered. More-
over, in FSDT, the shear correction factor is required
because the transverse shear deformation stresses are
assumed to be constant across the thickness and cannot
satisfy the free surface conditions. Additional modified
theories have been proposed by many researchers [20–
23] that in these theories the shear correction factor
is not required. In recent years based on these the-
ories, many articles have been established. Hosseini-
Hashemi et al. [24] presented buckling of isotropic rect-
angular plates subjected to in-plane loaded. in their
research An analytical closed-form solution was devel-
oped. In this solution method use of approximation for
a combination of six different boundary conditions is
not required. Hassani and Gholami [25] studied ther-
moelastic functionally graded (FG) rotating disks with
nonuniform thickness under lateral pressure using nu-
merical and analytical solutions. Thai and Choi [26]
presented a simple FSDT to study the bending and
free vibration of functionally graded plates. The the-
ory presented in this research was built upon the clas-
sical plate theory. Khorshidi and Fallah [27] studied
the buckling response of functionally graded nano-plate
based on exponential shear deformation theory. The
theory presented in this research was built upon the
classical plate theory. Moreover, they investigated the
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effect of exponential stress resultant on the buckling re-
sponse of functionally graded rectangular plates based
on exponential shear deformation theory [28]. Shi et
al. [30] proposed a new Hyperbolic Tangent Shear
Deformation theory (HTSDT) for the static, free vi-
bration and buckling analysis of laminated composite
plates. In the present theory, shear stresses disappear
at the top and bottom surfaces of the plates and shear
correction factors are no longer required. Tanzadeh
and Amoushahi [31] developed a finite strip method
for buckling and free vibration analysis of piezoelectric
laminated composite plates based on various plate the-
ories such as Zigzag, Re-fined plate and other higher
order shear deformation theory by variation of trans-
verse shear strains through plate thickness in the form
of parabolic, sine, and exponential.

The simplest model to describe the interaction be-
tween the plate and foundation is the winkler model,
which considers the foundation as a series of separated
spring without coupling effect between each other.
Pasternak [32] developed the Winkler model. Paster-
nak added a shear spring to show the influence of the
interaction between the springs in Winkler model. Or-
thotropic Pasternak foundation [33] is another model
to describe the interaction between the plate and foun-
dation. In this model, normal, transverse, shear, and
damping loads are considered while in Winkler’s only
normal loads are considered.

In this paper, vibrational behaviour of piezoelec-
tric microplates resting on the orthotropic foundation
subjected to thermal and electrical load was studied.
The small-scale effects of the microplate were captured
according to the couple stress theory. A single par-
tial differential equation for transverse vibration of mi-
croplate was derived using a simple method, and ana-
lytical solution of vibrating microplate is presented for
five different boundary conditions. In the result sec-
tion, influences of different variables on frequencies are
discussed.

2. Formulation

Yang et al. [16] proposed the modified couple-stress
theory. They developed the classical couple-stress the-
ory in which curvature and strain tensor are symmetric.
Moreover, modified couple-stress theory contains only
one MLSP that is another advantage of this theory over
classical couple-stress theory. According to the mod-
ified couple-stress theory, curvature and strain tensor
are defined as [11, 20].

εij =
1

2
(ui,j + uj,i)

χij =
1

2
(ωi,j + ωj,i)

ωi =
1

2
eijkuk,j

Ei = −Φ,i

(1)

where ui are displacement vectors and ωi are rotation
vectors. Ei are electric fields and ϕ is the electric po-
tential. Constitutive relations are also given by [11, 20].

σij = Cijklεkl + eijkEk − λij∆T

Di = eiklεkl + µikEk + pi∆T

mij = 2Gℓ2χij

(2)

Here σij and mij denotes the stress and couple
stress tensor, respectively. eijk, Cijkl and µik are
piezoelectric, elastic and dielectric coefficients, respec-
tively. Di denotes the electric displacement. G and ℓ
are shear module and material length scale parameter,
respectively and Ek are electric fields.

Fig. 1. Schematic of piezoelectric rectangular micro-
plate.

3. Modified Shear Deformation Theories

Consider a piezoelectric rectangular micro-plate of
length a, width b, and thickness h, as shown in Fig.
1. Modified shear deformation theories is employed to
give the displacement vector. The displacement of the
proposed micro-plate is:

u1(x, y, z, t) = u(x, y, t)− z
∂w(x, y, t)

∂x
+ fi(z)ψx(x, y, t)

u2(x, y, z, t) = v(x, y, t)− z
∂w(x, y, t)

∂y

+ fi(z)ψy(x, y, t)

u3(x, y, z, t) = w(x, y, t)

Φ(x, y, z, t) = −g(z)φ(x, y, t) + 2zV0
h

eiωt

(3)

where u, v, and w represent displacements of an ar-
bitrary point along x, y, and z axes; V0 is the exter-
nal electric voltage applied on the upper surface; φ is
the electric potential on the mid-plane and ω is the
frequency related to the external electric voltage. ψx

and ψy are the rotation functions of the mid-plane in
the x and y directions, respectively. Various distribu-
tions for f(z) including Exponential Shear Deforma-
tion Theory (ESDT), Trigonometric Shear Deforma-
tion Theory (TSDT), Hyperbolic Shear Deformation
theory (HSDT), Parabolic Shear Deformation Theory
(PSDT) and Fifth-order Shear Deformation Theory
(FOSDT) are presented in Table 1.
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Table 1
Different shear deformation theories.

Type of theory fi(z)

ESDT [33] ze−2( z
h )

2

TSDT [34] h

π
sin
(πz
h

)
HSDT [35] h sinh

( z
h

)
− z cosh

(
1

2

)
PSDT [38] z

(
5

4
− 5z2

3h2

)
FOSDT [38] z

(
1

h
− 2z2

h3
+

8z4

5h5

)

The displacement strain field with the linear as-
sumption of von-Karman strain can be obtained as fol-
lows:

ε11 =
∂u1
∂x

=
∂u

∂x
− z

∂2w

∂x2
+ f(z)

∂ψx

∂x

ε22 =
∂u2
∂y

=
∂v

∂y
− z

∂2w

∂y2
+ f(z)

∂ψy

∂y

ε12 =
1

2

(
∂u1
∂y

+
∂u2
∂x

)
=
∂u

∂y
+
∂v

∂x
− 2z

∂2w

∂x∂y

+ f(z)

(
∂ψx

∂y
+
∂ψy

∂x

)
ε23 =

1

2

(
∂u2
∂z

+
∂u3
∂y

)
= g(z)ψy

ε31 =
1

2

(
∂u3
∂x

+
∂u1
∂z

)
= g(z)ψx

g(z) =
∂f(z)

∂z

(4)

And the curvature components from Eq. (1) and
electric fields will be as what follows:

ω1 =
1

2
(e123u3,2 + e132u2,3) =

1

2
(u3,2 − u1,3)

ω2 =
1

2
(e213u3,1 + e231u1,3) =

1

2
(−u3,1 + u1,3)

ω3 =
1

2
(e312u2,1 + e321u1,2) = (u2,1 − u1,2)

χ11 =
1

2
(ω1,1 + ω1,1) =

1

2

(
2
∂2w

∂x∂y
− g(z)

∂ψy

∂x

)
χ22 =

1

2
(ω2,2 + ω2,2) =

1

2

(
−2

∂2w

∂x∂y
+ g(z)

∂ψx

∂y

)
χ33 =

1

2
(ω3,3 + ω3,3) =

1

2
g(z)

(
−∂ψx

∂y
+ g(z)

∂ψy

∂x

)
χ12 =

1

2
(ω1,2 + ω2,1) (5)

=
1

4

(
−2

∂2w

∂x2
+ 2

∂2w

∂y2
+ g(z)

∂ψx

∂x
− g(z)

∂2ψy

∂y

)
χ23 =

1

2
(ω2,3 + ω3,2)

=
1

4

(
− ∂2u

∂y2
+

∂2v

∂x∂y
− f(z)

∂2ψx

∂y2
+ g′(z)ψx

+ f(z)
∂2ψy

∂x∂y

)
χ31 =

1

2
(ω3,1 + ω1,3)

=
1

4

(
− ∂2u

∂x∂y
+
∂2v

∂x2
− f(z)

∂2ψx

∂x∂y
− g′(z)ψy

+ f(z)
∂2ψy

∂x2

)
E1 = −Φ,1 = −∂Φ

∂x
= g(z)

∂φ

∂x

E2 = −Φ,2 = −∂Φ
∂y

= g(z)
∂φ

∂y

E3 = −Φ,z = −∂Φ
∂y

= −γ2f(z)φ− 2V0
h
eiωt

4. Orthotropic Pasternak Foundation

The Winkler foundation only considers normal loads
while orthotropic Pasternak foundation considers nor-
mal, transverse, shear, and damping loads. Due to the
orthotropic Pasternak foundation, a force was applied
on the micro-plate that can be determined as [33]:

F = −Kgx

(
cos2 θ

∂2

∂x2
W (x, y, z, t)

+ sin 2θ
∂2

∂y∂x
W (x, y, z, t)

+ sin2 θ
∂2

∂y2
W (x, y, z, t)

)
−Kgy

(
sin2 θ

∂2

∂x2
W (x, y, z, t)

− sin 2θ
∂2

∂y∂x
W (x, y, z, t)

+ cos2 θ
∂2

∂y2
W (x, y, z, t)

)
+KwW (x, y, z, t)− cd

∂

∂t
W (x, y, z, t)

(6)

where Kgx and Kgy are shear foundation parameters,
Kw and cd are Winkler constant and damping con-
stant, respectively. θ is also the angel of orthotropic
foundation.

5. Vibration of Piezoelectric Micro-plate

The Hamilton’s principle was employed To governing
the equations of motion. The Hamilton’s principle is
obtained as what follows:∫ t

0

(δT + δWf − δU)dt = 0 (7)
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Strain energy, kinetic energy, and work done by
external forces in the piezoelectric microplate can be
obtained as follows:

U =
1

2

∫
A

∫ h
2

−h
2

(σ11ε11 + σ22ε22 + 2σ12ε12 + 2σ13ε13

+ 2σ23ε23)dzdA

+
1

2

∫
A

∫ h
2

−h
2

(m11χ11 +m22χ22 +m33χ33 + 2m12

+m22χ12 + 2m13χ13 + 2m23χ23)

− 1

2

∫
A

∫ h
2

−h
2

(D1E1 +D2E2 +D3E3)dzdA (8)

T =
1

2

∫
A

∫ h
2

−h
2

ρ(u̇iu̇i)dV (9)

T =
1

2

∫
A

∫ h
2

−h
2

ρ

[(
∂u1
∂t

)2

+

(
∂u2
∂t

)2

+

(
∂u3
∂t

)2
]
dV

Wf =
1

2

∫
A

(
Fxδ

(
∂w

∂x

)2

+ Fyδ

(
∂w

∂y

)2
)

+ Fδu3dA (10)

Wf =
1

2

∫
A

(
Fx
∂2w

∂x2
+ Fy

∂2w

∂y2

)
+ F × (w)dA

Fx = FPx + FTx + FEx, Fy = FPy + FTy + FEy

where A is domain of mid-plane of micro-plate (at
z = 0); (FPx, FPy), (FTx, FTy) and (FEx, FEy) are nor-
mal forces created by axial force P , temperature rise
∆T and external electric voltage that are given as [37].

FPx = FPy = P,

FTx = FTy = λ̃11h∆T,

FEx = FEy = −2ẽ31V0

(11)

By substituting Eqs. (7-9) into Eq. (6) and inte-
grating by parts following equations will be obtained:

L1ξ + L2ψ + L3ϕ = L4w (12a)

L5ξ + L6ψ + L7ϕ = L8w (12b)

L9ξ + L10ψ + L11ϕ = L12w (12c)

L13ξ + L14ψ + L15ϕ = L16w (12d)

where the operator Li is defined by:

L1 ≡ (A17 +A18)
∂2

∂x∂y
+

(
D5

4

)(
∂4

∂x∂y3
+

∂4

∂x3∂y

)
−
(
D8

2
+

3D6

4

)
∂2

∂x∂y

L6 ≡ (A17 +A18)
∂2

∂x∂y
+

(
D5

4

)(
∂4

∂x∂y3
+

∂4

∂x3∂y

)
− D8

4

∂2

∂x∂y
− D6

2

∂2

∂x2
− D6

4

∂2

∂x∂y

L2 ≡ A16
∂2

∂y2
+A18

∂2

∂x2
−A19

+

(
D5

4

)(
∂4

∂x2∂y2
+

∂4

∂x4

)
+

(
D8

2
+D6

)
∂2

∂x2
+

(
D6

4

)
∂2

∂y2

− D7

4
− I6

∂2

∂t2

L3 = L10 ≡ (B5 +B7)
∂

∂y

L4 ≡ (A13 + 2A15)
∂3

∂x2∂y
+A11

∂3

∂y3

−D3
∂3

∂x2∂y
−D3

∂3

∂y3
− I5

∂3

∂y∂t2

L14 ≡ (A13 + 2A15)
∂3

∂x2∂y
+A11

∂3

∂y3

− 3D3

2

∂3

∂x2∂y
+
D3

2

∂3

∂y3

L5 ≡ A16
∂2

∂x2
+A18

∂2

∂y2
−A19 (13)

−
(
D5

4

)(
∂4

∂y4
+

∂4

∂x2∂y2

)
+

(
D8

2
+
D6

4

)
∂2

∂y2
+

(
3D6

4

)
∂2

∂x2

− D8

4

∂2

∂x∂y
− D7

4
− I6

∂2

∂t2

L7 = L9 ≡ (B5 +B7)
∂ϕ

∂x

L8 ≡ A11
∂3

∂x3
+ (A13 + 2A15)

∂3

∂y2∂x

− D3

2

(
∂3

∂x3

)
− I5

∂3

∂x∂t2

L13 ≡ A11
∂3

∂x3
+ (A13 + 2A15)

∂3

∂y2∂x

+
D3

2

∂3

∂x∂y2
+
D3

2

∂3

∂x3
− I5

∂3

∂x∂t2

L11 = B8∇2 −B9

L12 = L15 ≡ B3∇2

L16 ≡ A10
∂4

∂x4
+ (2A12 + 4A14)

∂4

∂x2∂y2
+A10

∂4

∂y4

Journal of Stress Analysis/ Vol. 4, No. 1, Spring − Summer 2019 129



− (I3
∂4

∂x2∂t2
+ I3

∂4

∂y2∂t2

− Fx
∂2

∂x2
− Fy

∂2

∂y2
)

moreover, Ai and Bi are given as:

{A10, A12, A14} =

∫ h
2

−h
2

{c̃11, c̃12, c̃66}z2dz

{A11, A13, A15} =

∫ h
2

−h
2

{c̃11, c̃12, c̃66}zf(z)dz

{A16, A17, A18} =

∫ h
2

−h
2

{c̃11, c̃12, c̃66}f(z)2dz

A19 =

∫ h
2

−h
2

c̃44

(
∂f(z)

∂z

)2

{I3, I5, I6} =

∫ h
2

−h
2

ρ{z2, zf(z), f(z)2}dz

{B3, B5} =

∫ h
2

−h
2

{z, f(z)}ẽ31γ sin(γz)dz

B8 =

∫ h
2

−h
2

κ̃11 cos
2(γz)dz

B9 =

∫ h
2

−h
2

κ̃33(γ sin(γz))
2dz

B7 =

∫ h
2

−h
2

ẽ15
∂f(z)

∂z
cos(γz)dz

{D1, D2, D3, D4, D5, D6, D7, D8} =∫ h
2

−h
2

{10, f(z), f ′(z), f
′′
(z), f2(z), (f ′(z))2

(f
′′
(z))2, f(z)f ′(z)}C44ℓ

2dz

(14)

Now ϕ, ψ and ξ can be obtained in terms of w ac-
cording to elimination method in solving systems of
linear equations from Eqs. (12a), (12b), and (12c).

Γ1ζ = Γ2w, Γ1ψ = Γ3w, Γ1ϕ = Γ4w (15)

where the operator Γi is given as:

Γ1 = L11L2L5 − L10L3L5 − L1L11L6

+ L1L10L7 + L3L6L9 − L2L7L9

Γ2 = L12L3L6 − L11L4L6 − L12L2L7

+ L10L4L7 + L11L2L8 − L10L3L8

Γ3 = −L12L3L5 + L11L4L5 + L1L12L7

− L1L11L8 − L4L7L9 + L3L8L9

Γ4 = L12L2L5 − L10L4L5 − L1L12L6

+ L1L10L8 + L4L6L9 − L2L8L9

(16)

Finally, taking operator Γ1 from both sides of Eq.
(12d) and using (15), transverse displacement equation
of piezoelectric micro-plate can be obtained as follows:

L13Γ2w + L14Γ3w + L15Γ4w = L16Γ1w (17)

6. Exact Solution

In this section, the natural frequency of piezoelectric
micro-plates is obtained using a new simple analytical
solution [37]. In this method, rotations are expressed
in terms of transverse displacement and are substitute
in transverse equation. This analytical solution for Eq.
(16) can be used for different boundary conditions ac-
cording Table 2. The solution that satisfies appropriate
boundary conditions can be written in following form.

7. Numerical Results

To validate this model, results were compared with cor-
responding ones in open literature, then numerical re-
sults for vibration analysis of piezoelectric micro-plate
under different boundary conditions including, SSSS,
CSSS, CSCS, CSCS, CCSS, CCCC are illustrated. Ma-
terial properties of PZT4, which was used in this study,
are given in Table 3.

Table 4 presents a comparison between the present
study with those reported by Ke et al. [37] for first
three dimensionless frequencies of SSSS, CCSS, and
CCCC rectangular micro-plate. The material of micro-
plate is assumed to be PZT4 and ∆T = 0. Ke et
al. investigated thermo-electro-mechanical vibration of
the rectangular piezoelectric nano-plate based on the
Mindlin plate theory under various boundary condi-
tions. Table 4 also provides a comparison of the di-

mensionless frequencies ω̄ = ω
a2

h

√
ρ

E
for piezoelectric

rectangular plate with those obtained by Bahreman et
al. [39]. It is assumed that E = 1.44GPa, ν = 0.38,
h = 88µm, ρ = 1220kg/m3. In this table, the effects
of MLSP are shown. From Tables 3 and 4 it is evident
that the excellent agreement between the present re-
sults and those reported by Ke et al. [37] confirms the
high accuracy of the current analytical approach. Ac-
cording to Table 5, there is a bit difference between the
results, which are obtained from various shear defor-
mation theories. These differences are due to the fact
that function f(z) has different expansions through the
thickness in various theories.

The dimensionless natural frequency of the rectan-
gular micro-plate to study the influences of variation
of length scale parameter are illustrated in Fig. 2 for
SSSS boundary condition. In Fig. 2a, the dimension-
less natural frequency of the rectangular micro-plate
for various aspect ratios (a/b) are plotted and length
to thickness ratio (a/h) is assumed to be a/h = 10.

Effects of Couple-stress Resultants on Thermo-electro-mechanical Behavior of Vibrating Piezoelectric Micro-
plates Resting on Orthotropic Foundation: 125–136 130



Table 2
Admissible functions for various boundary conditions.

Boundary conditions Functions X(x) and Y (y)

At x = 0, x = L1 At y = 0, x = L2 Xm(x) Yn(y)

SSSS
Xm(0) = X

′′

m(0) = 0 Yn(0) = Y
′′

n (0) = 0
sin
(

mπx
L1

)
sin
(

nπy
L2

)
Xm(L1) = X

′′

m(L1) = 0 Yn(L2) = Y
′′

n (L2) = 0

CSSS
Xm(0) = X

′

m(0) = 0 Yn(0) = Y
′′

n (0) = 0
sin
(

mπx
L1

)(
cos
(

mπx
L1

)
− 1
)
sin
(

nπy
L2

)
Xm(L1) = X

′′

m(L1) = 0 Yn(L2) = Y
′′

n (L2) = 0

CSCS
Xm(0) = X

′

m(0) = 0 Yn(0) = Y
′

n(0) = 0
sin
(

mπx
L1

)(
cos
(

mπx
L1

)
− 1
)
sin
(

nπy
L2

)(
cos
(

nπy
L2

)
− 1
)

Xm(L1) = X
′′

m(L1) = 0 Yn(L2) = Y
′′

n (L2) = 0

CCSS
Xm(0) = X

′

m(0) = 0 Yn(0) = Y
′′

n (0) = 0
sin2

(
mπx
L1

)
sin
(

nπy
L2

)
Xm(L1) = X

′

m(L1) = 0 Yn(L2) = Y
′′

n (L2) = 0

CCCC
Xm(0) = X

′′

m(0) = 0 Yn(0) = Y
′′

n (0) = 0
sin2

(
mπx
L1

)
sin2

(
nπy
L2

)
Xm(L1) = X

′

m(L1) = 0 Yn(L2) = Y
′

n(L2) = 0

Table 3
Material properties of PZT4.

Property Value Property Value Property Value Property Value

E0 1× 109 c11 132E0 c44 26E0 e15 10.5

E1 1× 109 c12 71E0 c66 30.5E0 e33 14.1

E2 1× 105 c13 73E0 ρ 7500 h 5E1

E3 1× 10−4 c33 115E0 e31 −4.1 κ11 5.841E1

κ33 7.124E1 λ11 4.738E2 λ33 4.529E2 p1 = p3 0.25E1

Table 4
Comparison study of the first three dimensionless frequencies of SSSS, CCSS and CCCC piezoelectric rectangular micro-plate.

Boundary condition Model ω1 ω2 ω3

SSSS

Present (ESDT) 0.5463 1.0143 1.5620
Present (TSDT) 0.5462 1.0142 1.5619
Present (HSDT) 0.5461 1.0141 1.5617
Present (PSDT) 0.5461 1.0141 1.5617
Present (FOSDT) 0.5641 1.0144 1.5619
Ref. [37] 0.5453 1.0132 1.5594

CCSS

Present (ESDT) 0.7192 1.1854 1.7881
Present (TSDT) 0.7191 1.1853 1.7880
Present (HSDT) 0.7190 1.1851 1.7880
Present (PSDT) 0.7190 1.1851 1.7880
Present (FOSDT) 0.7190 1.1854 1.7883
Ref. [37] 0.7184 1.1838 1.7868

CCCC

Present (ESDT) 0.9146 1.3691 2.0143
Present (TSDT) 0.9142 1.3690 2.0141
Present (HSDT) 0.9141 1.3689 2.0140
Present (PSDT) 0.9141 1.3689 2.0140
Present (FOSDT) 0.9142 1.3692 2.0143
Ref. [37] 0.9137 1.3672 2.0096
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Table 5
Comparison study of frequency parameters ω̄ for rectangular plate with those obtained by Bahreman et al. [39].

a/h Model ℓ/h

0 0.2 0.4 0.6 0.8 1

5

Present (ESDT) 5.2845 5.7747 7.0415 8.7514 10.6929 12.7607
Present (TSDT) 5.2822 5.7711 7.0352 8.7421 10.681 12.7463
Present (HSDT) 5.2813 5.7698 7.0330 8.7389 10.6766 12.7408
Present (PSDT) 5.2813 7.7698 7.0330 8.7389 10.6766 12.7408
Present (FOSDT) 5.2854 5.7764 7.0446 8.7559 10.6987 12.7678
Ref. [39] 5.4165 5.9039 7.1695 8.8861 10.8414 12.9273

20

Present (ESDT) 5.9201 6.4030 7.6714 9.4125 11.4120 13.5560
Present (TSDT) 5.9199 6.4027 7.6709 9.4118 11.4111 13.5548
Present (HSDT) 5.9198 6.4027 7.6707 9.4116 11.4108 13.5545
Present (PSDT) 5.9198 6.4027 7.6707 9.4116 11.4108 13.5548
Present (FOSDT) 5.9201 6.4032 7.6716 9.4129 11.4125 13.5566
Ref. [39] 5.9332 6.4158 7.6840 9.4257 11.4266 13.5723

100

Present (ESDT) 6.9711 6.4535 7.7217 9.4651 11.4689 13.6188
Present (TSDT) 6.9711 6.4535 7.7217 9.4650 11.4689 13.6186
Present (HSDT) 6.9711 6.4535 7.7217 9.4650 11.4689 13.6186
Present (PSDT) 6.9711 6.4535 7.7217 9.4650 11.4689 13.6186
Present (FOSDT) 6.9712 6.4535 7.7217 9.4651 11.4689 13.6187
Ref. [39] 5.9717 6.4540 7.7229 9.4656 11.4695 13.6193

Fig. 2. Natural frequency of the rectangular micro-plate for SSSS boundary condition versus various, a) Aspect
ratio (a/b), and b) Various length to thickness ratio (a/h).

Moreover, in Fig. 2b the dimensionless natural
frequency of the rectangular micro-plate for various
length to thickness ratios (a/h) are tabulated and as-
pect ratio (a/b) is assumed to be a/b = 1 also in Fig.
2, V0 is considered to be zero. It is evident that the
natural frequency of the micro-plate increases with in-
creasing length scale parameter to thickness ratio (l/h);
because with increasing the length scale parameter,
the micro-plate becomes stiffer. Furthermore, the fre-
quency raises by increasing aspect ratio because for a
plate with length a, when the width of the plate de-
creases it leads into decreasing the degree of freedom,
therefore the stiffness of plate and frequency will in-
crease.

In Fig. 3, the effects of the temperature on the

dimensionless frequency of the piezoelectric rectangu-
lar micro-plate are shown. According to this figure,
it seems that with increasing temperature, the di-
mensionless frequency decreases because by raising the
temperature the stiffness of micro-plate decreases.

Figs. 4 and 5 depict the effects of orthotropic foun-
dation on the vibration behavior of piezoelectric rect-
angular micro-plate. The dimensionless frequency ver-
sus Kgx for piezoelectric microplate is investigated in
Fig. 4. Moreover, in this figure the effects of Winkler
constant (Kw) are shown. It is obvious that increas-
ing Kgx and Kw lead into increasing the dimensionless
frequency of the piezoelectric rectangular micro-plate.
The effects of the boundary conditions on the natu-
ral frequency of micro-plate are plotted in Fig. 5. It
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is evident that when degrees of freedom of microplate
decrease, the natural frequency increases because with
decreasing degree of freedom, the micro-plate becomes
stiffer.

Fig. 3. The effects of the temperature on the dimen-
sionless frequency of the SSSS piezoelectric rectangular
micro-plate; a/b = 1, a/h = 20, V0 = 200V.

Fig. 4. The effects of the orthotropic Pasternak foun-
dation on the dimensionless frequency of the SSSS
piezoelectric rectangular micro-plate.

Fig. 5. The effects of the orthotropic Pasternak foun-
dation and various boundary conditions on the di-
mensionless frequency of the piezoelectric rectangular
micro-plate.

Furthermore, Fig. 6 demonstrates the effects of the
orthotropic Pasternak foundation on the dimensionless
frequency of the piezoelectric rectangular micro-plate

for various boundary conditions. It is seen that the di-
mensionless frequency increases by increasing Paster-
nak foundation parameters such as Kw and Kgx. It
is also evident that the stability of the micro-plate in-
creases when both Kgx and Kw increase. Moreover, it
seems that the effect of the Kgx is more than Kw.

SSSS

CSSS
Fig. 6. The effects Winkler constant (Kw) and Kgx on
the dimensionless frequency of the piezoelectric rectan-
gular micro-plate corresponding to different boundary
conditions.

In Figs. 7 and 8, the dimensionless frequency ver-
sus the orthotropic angle is investigated. These figures
can be used to have a better understanding of the ef-
fect of the orthotropic foundation on the dimensionless
frequency of micro-plate. If Kgy > Kgx, by increas-
ing the orthotropic angle the dimensionless frequency
raises until it reaches a maximum value. Then increase
of the orthotropic angle leads into reducing the dimen-
sionless frequency, while for Kgx > Kgy, this variations
is inverse. It means that when Kgx > Kgy, increasing
the orthotropic angle leads into reducing dimension-
less frequency and this value reaches a minimum value.
After that when the orthotropic angle increases the di-
mensionless frequency increases. Furthermore, the fre-
quency raises by increasing aspect ratio because for a
plate with length a, when the width of the plate de-
creases, it leads into decreasing the degree of freedom,
therefore the stiffness of plate and frequency increase.
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Fig. 7. The effects of the angel of orthotropic foun-
dation and various boundary conditions on the di-
mensionless frequency of the rectangular micro-plate;
a/h = 10, a/b = 1, l/h = 0.2, Kw = 5, Kgx = 10.

8. Conclusions

The present study contains thermo-electro vibration
of piezoelectric micro-plate resting on the orthotropic
foundation subjected to different boundary conditions.
The formulations were based on the different shear de-
formation theories using the couple-stress theory, and
Hamilton’s principle was used to drive the equations of
motion.

The effect of different parameters such as thickness
ratio, aspect ratio, increasing temperature, boundary
conditions, foundation parameters, external voltage,
and length scale on the natural frequencies of the plate
was also studied. It was shown that,

• The natural frequency of micro-plate increases
with increasing length scale parameter to thick-
ness ratio (l/h), because with increasing the
length scale parameter the micro-plate becomes
stiffer.

Fig. 8. The effects of the angel of orthotropic foun-
dation and various boundary conditions on the di-
mensionless frequency of the rectangular micro-plate;
a/h = 10, a/b = 1, l/h = 0.2, Kw = 5, Kgy = 10.

• The natural frequency of micro-plate increases
with increasing length scale parameter to thick-
ness ratio (l/h), because with increasing the
length scale parameter the micro-plate becomes
stiffer.

• The dimensionless frequency increases by increas-
ing Pasternak foundation parameters such as Kw

and Kgx. Additionally, the stability of the micro-
plate increases when both Kgx and Kw increase.
Moreover, the effect of the Kgx is greater than
Kw.

• With increasing temperature, the dimensionless
frequency decreases because by raising the tem-
perature the stiffness of micro-plate decreases.

• As boundary conditions get stronger support,
rigidity of structure rises and frequency of vibra-
tion increases. Thus, frequency parameter is at
the lowest in SSSS and is at the highest in CCCC.
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