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Abstract

In this paper, for the first time, displacement and stress analysis of bi-
directional functionally graded (BDFG) porous sandwich beams are developed
using the Chebyshev tau method. Based on the presented approach, sandwich
beams under non-uniform load rested on Winkler/Pasternak foundation are
analyzed. The material properties of core and each face sheet can be varied
continuously in the axial and thickness directions, also the material properties
are affected by the variation of temperature and moisture. To overcome some
of the shortcomings of the traditional equivalent single layer theories for
analysis of sandwich structures, governing equations are extracted based on
the layerwise theory and five coupled differential equations are obtained. The
resulting differential equations are solved using the Chebyshev tau method
(CTM). The effectiveness of the CTM is demonstrated by comparing the
obtained results with those extracted from the ABAQUS software. The
comparisons indicate that the applied method to solve the systems of ordinary
differential equations is efficient and very good accurate.

Nomenclature

hi, i = t, c, b Thickness of the top, core and bot-
tom face sheets

ui,i = t, c, b In-plane displacement of the top,
core and bottom layers

f(x) Porous distribution in longitudinal
direction

PN Space of algebraic polynomials of
degree at most N ∈ N, N > 0

φ
(i)
x , i = t, c, b Rotation of the top, core and bot-

tom layers
σ
(i)
x , i = t, c, b Through the thickness of the in-

plane stress
B Set of linear differential operators

defined on −1 and 1
α(i)and β(i) Thermal expansion and moisture

concentration coefficients
E Young’s modulus δn,m Kronecker delta symbol
XN Space of trial or shape functions L Linear differential operator
w Transverse displacement C Moisture exposure
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T Elevated temperature v Poisson’s ratio
U Potential energy W Work of the applied loads
kw Winkler’s coefficient ks Pasternak’s coefficient
YN Space of test functions β Number of boundary conditions
s(z) Porous distribution in thickness direction

1. Introduction
Sandwich structures are widely applied in various
fields. These structures may be designed based on
the specified purposes, for example may be fabricated
by heterogeneous materials, subjected to non-uniform
load and hygrothermal environment, resting on elastic
foundation, etc. Thus, the analysis of these structures
and the development of a new approach are very im-
portant. The analysis of one-directional functionally
graded beam with variation of the material proper-
ties in thickness [1, 2] or axial direction [3, 4] have
been extensively studied by many researchers. How-
ever, the studies on bi-dimensional functionally graded
(BDFG) beam are very far and few between, even for
single layer beams. Based on the exponential variation
of Young’s modulus in the thickness and axial direc-
tions, Lu et al. [5] analyzed the bending of bi-direction
FG beams. The dynamic response of BDFG beams
were investigated by Deng and Cheng [6]. Wang et
al. [7] analyzed the free vibration analysis of BDFG
beam in which the material properties vary based on
a power law gradation in thickness direction and ex-
ponentially in axial direction. Free vibration, buckling
and dynamic analyses of BDFG microbeam embedded
in elastic foundation were investigated by Chen et al.
[8]. Chen et al. [9] investigated the static and dynamic
responses of BDFG microbeams based on the third-
order shear deformation beam theory. Simsek stud-
ied the buckling [10] and dynamic response of BDFG
beams under moving load [11]. Li et al. [12] exam-
ined bending behavior of BDFG beam structures based
on a proposed meshless Total Lagrangian (TL) Cor-
rective Smoothed Particle Method (CSPM). General
non-uniform material-varying micro-beam models un-
der a moving harmonic load/mass were investigated
by Rajasekaran and Khaniki [13]. Nguyen and Lee
[14] analyzed the static behaviors of thin-walled BDFG
beams. Free vibration of BDFG circular beams was in-
vestigated by Fariborz and Batra [15] based on shear
deformation theory. Karamanli [16] analyzed the free
vibration of BDFG beams. Pydah and Sabale [17] con-
ducted a static analysis of BDFG curved beams based
on the Euler-Bernoulli theory. Postbuckling analysis
of BDFG imperfect beams was investigated by Lei et
al. [18]. Bending and stress [19] and free vibration [20]
analyses of circular plates with variation of the mate-
rial properties in the radial and thickness directions,
were performed by Alipour and Shariyat. Spectral
methods have been used extensively for various appli-
cations in the last two decades because of their good
rate of convergence for sufficiently smooth functions
[21]. Shariyat et al. [22] investigated material het-

erogeneity on stress and free vibration of the circular
plates. Chebyshev tau method is a particularly efficient
spectral approach in which Chebyshev polynomials are
used in the tau method of Lanczos [23]. Numerical
programs using this technique are often considerably
faster with greater accuracy than other standard meth-
ods such as finite differencing [24]. Etehadi and Bot-
shekanan Dehkordi [25] investigated the functionally
graded sandwich beam and analyzed the effect of axial
stresses of the core. Based on three-dimensional theory
of elasticity, Shaban [26] carried out a static analysis of
sandwich structures with sinusoidal corrugated cores.
Recently there have been several published papers on
the applications of the tau method. Siyyam and Syam
[27] presented the CTM for the two-dimensional Pois-
son equation. Ahmadi and Adibi [28] applied the
Chebyshev tau method for the Laplace equation. Saa-
datmandi and Dehghan [29] utilized the CTM to ap-
proximate the solution of hyperbolic telegraph prob-
lem. Wang [30] applied a time-splitting Chebyshev tau
spectral method to the Ginzburg-Landau-Schrödinger
equation with zero/nonzero far-field boundary condi-
tions. Saravi [31] proposed the CTM for solving linear
ordinary differential equations. The presented study
examined the bending and stress analysis of BDFG
porous sandwich beams under non-uniform load rest-
ing on Winkler/Pasternak foundation in hygrothermal
environment. In the most of the previous publica-
tions, analysis was conducted using the equivalent sin-
gle layer theories, and therefore they are limited to
the analysis of single layer beams. In this study, to
overcome the shortcomings of the single layer theories
in the analysis of multilayer structures [32, 33], gov-
erning equations are obtained based on the layerwise
theory [34–37]. The chebyshev tau spectral scheme is
employed to solve the five coupled differential equa-
tions. The effectiveness of the proposed solution pro-
cedure is demonstrated by the comparison of the ob-
tained results with those extracted from the ABAQUS
software. In section 2, a three-layer sandwich beam
is investigated. Next, the CTM is described briefly in
section 3. The fourth section is devoted to applying
the CTM and obtaining the results. In section 5, some
examples are given to show the accuracy, validity and
applicability of the technique. Finally, the conclusions
are presented in section 6.

2. Governing Equations of the FG
Three-layered Sandwich Beams

As shown in Fig. 1, a three-layer sandwich beam with
regard to non-uniform normal load is investigated. The
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thickness of the top and bottom face sheets and core
are denoted respectively by ht, hb and hc.

Fig. 1. Schematic of the BDFG porous sandwich beam
resting on Winkler/Pasternak foundation.
For sandwich beams with two directionally function-
ally graded porous cores, the elastic moduli can be ex-
pressed as:

Ec(x, z) = Ēc[1− s(z)f(x)],

Gc(x, z) =
Ec(x, z)

2(1 + vc)′

(1)

where s(z) and f(x) are the porous distribution in
thickness and longitudinal directions. Two patterns
are examined for the porous distribution in thickness
direction.
Pattern A (uniform porosity distribution): s(z) = s0

Pattern B (non-uniform porosity distribution): (2)

s(z) = s0 cos

[(π
2

) z

hc
+

(π
4

)]
Based on the theory of layerwise, the displacement

field of the layers can be expressed as:

ut = u0 +

(
z − hc

2

)
φ
(t)
x +

hc
2
φ
(c)
x ,

hc
2

≤ z ≤ hc
2

+ ht,

uc = u0 + zφ
(c)
x , −hc

2
≤ z ≤ hc

2
,

ub = u0 +

(
z +

hc
2

)
φ
(b)
x − hc

2
φ
(c)
x ,

− hb −
hc
2

≤ z ≤ −hc
2
,

w = w0(x)

(3)

where ut, uc and ub are the in-plane displacement of
the top, core and bottom layers, φ(t)

x , φ(c)
x and φ(b)

x are

the rotation of the top, core and bottom layers and w
is the transverse displacement of sandwich beam. For
small deflections of beam, strains of each layer are given
as:

ε(i)x =
∂ui
∂x

, γ(i)xz =
∂ui
∂z

+
∂wi

∂x
, i = t, c, b (4)

The present heterogeneous porous beam is sub-
jected to moisture exposure C and elevated temper-
ature T .

σ(i)
x =

Ei

1− v2i
ε(i)x − Ei

1− vi
(α(i)∆T + β(i)∆C)

τ (i)xz =
Ei

2(1 + vi)
γ(i)xz , i = t, c, b

(5)

E is Young’s modulus, v is Poisson’s ratio, α(i) and
β(i) are the thermal expansion and moisture concen-
tration coefficients. The principle of minimum total
potential energy is used for derivation of the governing
equations as:

δII = δU − δW = 0 (6)

where U is the potential energy and W is the work of
the applied loads:

δU =

∫
l

∫ hc
2 +ht

hc
2

(
σ(t)
x δε(t)x + τ (t)xz δγ

(t)
xz

)
dzdx

+

∫
l

∫ hc
2

−hc
2

(
σ(c)
x δε(c)x + τ (c)xz δγ

(c)
xz

)
dzdx

+

∫
l

∫ −hc
2

−hc
2 −hb

(
σ(b)
x δε(b)x + τ (b)xz δγ

(b)
xz

)
dzdx (7)

δW =

∫
l

(q(x) + kw − ksw,xx)δwdx (8)

kw and ks are Winkler’s and Pasternak’s coefficients of
the elastic foundation, respectively.

Based on Eqs. (3) to (8), the governing equations
of the beam are:

δu0 ̸= 0 : N (t)
x,x +N (c)

x,x +N (b)
x,x = 0,

δφ(t)
x ̸= 0 :M (t)

x,x − hc
2
N (t)

x,x −Q(t)
x = 0,

δφ(c)
x ̸= 0 :M (c)

x,x +
hc
2

(
N (t)

x,x −N (b)
x,x

)
−Q(c)

x = 0, (9)

δφ(b)
x ̸= 0 :M (b)

x,x +
hc
2
N (b)

x,x −Q(b)
x = 0,

δw ̸= 0 : Q(t)
x,x +Q(c)

x,x +Q(b)
x,x − kww + ksw,xx = q(x),

where
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N

(t)
x = A(t)u0,x +

(
B(t) − hc

2
A(t)

)
φ
(t)
x,x +

hc
2
A(t)φ

(c)
x,x − (1 + vt)A

(t)
(
α(t)∆T + β(t)∆C

)
,

M
(t)
x = B(t)u0,x +

(
D(t) − hc

2
B(t)

)
φ
(t)
x,x +

hc
2
B(t)φ

(c)
x,x − (1 + vt)B

(t)
(
α(t)∆T + β(t)∆C

)
,

(10)

{
N

(c)
x = A(c)u0,x +B(c)φ

(c)
x,x − (1 + vc)A

(c)
(
α(c)∆T + β(c)∆C

)
,

M
(c)
x = B(c)u0,x +D(c)φ

(c)
x,x − (1 + vc)B

(c)
(
α(c)∆T + β(c)∆C

)
,

(11)


N

(b)
x = A(b)u0,x +

(
B(b) +

hc
2
A(b)

)
φ
(b)
x,x − hc

2
A(b)φ

(c)
x,x − (1 + vb)A

(b)
(
α(b)∆T + β(b)∆C

)
,

M
(b)
x = B(b)u0,x +

(
D(b) +

hc
2
B(b)

)
φ
(b)
x,x − hc

2
B(b)φ

(c)
x,x − (1 + vb)B

(b)
(
α(b)∆T + β(b)∆C

)
,

(12)

Q(t)
x = Ā(t)

(
φ(t)
x + w,x

)
,

Q(c)
x = Ā(c)

(
φ(c)
x + w,x

)
,

Q(b)
x = Ā(b)

(
φ(b)
x + w,x

)
,

(13)

x ∈ l = [−1, 1] and q(x) is the arbitrary distributed
transverse load of the top surface of the sandwich
beam. A(i), B(i), D(i) and Ā(i) for i = t, c, b are defined
as: 

A(t)

B(t)

D(t)

 =

∫ hc
2 +ht

hc
2

Et

1− v2t

 1
z
z2

 dz,


A(c)

B(c)

D(c)

 =

∫ hc
2

−hc
2

Ec

1− v2c

 1
z
z2

 dz,


A(b)

B(b)

D(b)

 =

∫ −hc
2

−hc
2 −hb

Eb

1− v2b

 1
z
z2

 dz,

(14)

Ā(t) =

∫ hc
2 +ht

hc
2

Et

2(1 + vt)
dz,

Ā(c) =

∫ hc
2

−hc
2

Ec

2(1 + vc)
dz,

Ā(b) =

∫ −hc
2

−hc
2 −hb

Eb

2(1 + vb)
dz

(15)

The governing equations of the FG three-layered
sandwich beam can be expressed as:(
A(t) +A(c) +A(b)

)
u0,xx +

(
B(t) − hc

2
A(t)

)
φ(t)
x,xx

+

(
hc
2
A(t) +B(c) − hc

2
A(b)

)
φ(c)
x,xx

+

(
B(b) +

hc
2
A(b)

)
φ(b)
x,xx +A(c)

,x u0,x +B(c)
,x φ

(c)
x,x

− (1 + vc)A
(c)
,x (α(c)∆T + β(c)∆C) = 0 (16)

(
B(t) − hc

2
A(t)

)
u0,xx +

(
D(t) − hcB

(t) +
h2c
4
A(t)

)
φ(t)
x,xx

+

(
hc
2
B(t) − h2c

4
A(t)

)
φ(c)
x,xx

− Ā(t)
(
φ(t)
x + w,x

)
= 0, (17)(

hc
2
A(t) +B(c) − hc

2
A(b)

)
u0,xx

+

(
hc
2
B(t) − h2c

4
A(t)

)
φ(t)
x,xx

+

(
h2c
4
A(t) +D(c) +

h2c
4
A(b)

)
φ(c)
x,xx

−
(
hc
2
B(b) +

h2c
4
A(b)

)
φ(b)
x,xx − Ā(c)

(
φ(c)
x + w,x

)
+B(c)

,x u0,x +D(c)
,x φ

(c)
x,x

− (1 + vc)B
(c)
,x (α(c)∆T + β(c)∆C) = 0, (18)(

B(b) +
hc
2
A(b)

)
u0,xx −

(
hc
2
B(b) +

h2c
4
A(b)

)
φ(c)
x,xx

+

(
h2c
4
A(b) + hcB

(b) +D(b)

)
φ(b)
x,xx

− Ā(b)
(
φ(b)
x + w,x

)
= 0, (19)

Ā(t)φ(t)
x,x + Ā(c)φ(c)

x,x + Ā(b)φ(b)
x,x

+
(
Ā(t) + Ā(c) + Ā(b)

)
w,xx

+ Ā(c)
,x

(
φ(c)
x + w,x

)
− kww + ksw,xx = q(x). (20)

The general edge conditions can be written as:

u0 = 0 or N
(t)
x +N

(c)
x +N

(b)
x = 0,

φ
(t)
x = 0 or M

(t)
x − hc

2
N

(t)
x = 0,

φ
(c)
x = 0 or hc

2
N

(t)
x +M

(c)
x − hc

2
N

(b)
x = 0,

φ
(b)
x = 0 or M

(b)
x +

hc
2
N

(b)
x = 0,

w = 0 or Q
(t)
x +Q

(c)
x +Q

(b)
x = 0.

(21)

The Clamped-Clamped (C-C) boundary condition
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can be derived as:

u0(±1) = φ(t)
x (±1) = φ(c)

x (±1)

= φ(b)
x (±1) = w(±1) = 0

(22)

3. The Tau Method

Some fundamental results for Chebyshev approxima-
tion [38] are needed. The Chebyshev polynomial of
degree n on [−1, 1] is defined by the formula as:

Tn(cos θ) = cosnθ (23)

For x ∈ [−1, 1], we have the following recurrence
relation:

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 0

T0(x) = 1

T1(x) = x

(24)

They form an orthonormal basis with respect to the
weighted scalar product:

(u, v)ω =

(∫ 1

−1

u(x)v(x)ω(x)dx

)
,

ω(x) =
1√

1− x2
, x ∈ [−1, 1]

(25)

Proposition 1: The polynomials Tn(x) are orthogo-
nal, i.e.,

(Tn(x), Tm(x))ω =
π

2
cnδn,m, m, n ∈ N (26)

where

δn,m =

{
0, n ̸= m,

1, n = m,
(27)

and the coefficients cn are:

cn =

{
2, n = 0,

1, n > 0.
(28)

Some useful properties of Chebyshev polynomials
are [39]:

|Tn(x)| ≤ 1, |x| ≤ 1,

Tn(−x) = (−1)nTn(x), Tn(±1) = (±1)n,
(29)

Tn(x)Tm(x) =
Tn+m(x) + T|n−m|(x)

2
(30)

The Chebyshev expansion of a function u(x) is:

u(x) =
∞∑

n=0

bnTn(x), bn =
2

πcn
(u, Tn(x))ω (31)

Consider the expansion of a function u(x) or its
derivatives in terms of Chebyshev polynomials on the
interval [−1, 1]. Suppose that u and its derivatives can
be expanded as:

u(x) =

∞∑
n=0

b(0)n Tn(x),
dmu

dxm
=

∞∑
n=0

b(m)
n Tn(x),

m = 0, 1, . . . (32)

Then recursion relation below is obtained:

cn−1b
(m)
n−1 = 2nb(m−1)

n + b
(m)
n+1, n ≥ 1 (33)

gives:

cnb
(1)
n = 2

∞∑
p=n+1
p+n odd

pbn,

cnb
(2)
n = 2

∞∑
p=n+2

p+n even

p[p2 − n2]bp, n ≥ 0,

(34)

where cn is defined by (28). The formulae given above
are used to expand products of Chebyshev polynomi-
als and derivatives of Chebyshev polynomials as ex-
pansions in Chebyshev polynomials. For instance, if a
function u(x) and its first and second derivatives u′(x)
and u′′(x) have series expansions in terms of Cheby-
shev polynomials, then we have:

u(x) =
N∑

n=0

bnTn(x),

u′(x) =
N−1∑
n=0

b(1)n Tn(x), (35)

u′′(x) =

N−2∑
n=0

b(2)n Tn(x),

then the coefficients b(1)n and b(2)n are related to the co-
efficients bn, by:

cnb
(1)
n = 2

p=N∑
p=n+1
p+n odd

pbp,

cnb
(2)
n = 2

p=N∑
p=n+2

p+n even

p[p2 − n2]bp,

(36)

where cn is defined by (28). The tau approach was first
suggested by Lanczos [23] and its use with Chebyshev
polynomials was later widely developed by Fox [40] and
was applied by Orszag to an extensive variety of prob-
lems [41]. Consider the following linear boundary value
problem:

(LP )

{
Lu = f, x ∈ (−1, 1),

Bu = 0,
(37)
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where L is a linear differential operator acting in a
Hilbert space, X and B stands for a set of linear differ-
ential operators defined on −1 and 1. A Hilbert space
[42] is a vector space equipped with a scalar product
for which all the Cauchy sequences are convergent. The
scalar product structure of a Hilbert space helps us to
introduce the concept of orthogonality. An orthogonal
basis of a Hilbert space is an orthogonal set such that
every vector in the space can be expanded in terms of
the basis. The Chebyshev tau method is characterized
by the following choice:

X = L2
ω(−1, 1), XN = {v ∈ PN |Bv = 0},

YN = PN−β ,
(38)

Where L2
ω(−1, 1) is the space of functions v so that

the norm

||v||ω =

(∫ 1

−1

|v(x)|2ω(x)dx
) 1

2

(39)

is finite [43], XN denotes the space of trial or shape
functions and YN is that of test functions. Moreover,
PN is the space of algebraic polynomials of degree at
most N ∈ N, N > 0 and β stands for the number of
boundary conditions. Accepting the family {Tn, n =
0, 1, 2, . . . , N} as a basis for the finite dimensional space
XN and the family {Tm, m = 0, 1, 2, . . . , N−β} as a set
of “test” functions in YN , the variational formulation
corresponding to (37) is:

find the coefficients bn of uN (x) ∈ PN ,

uN (x) =
N∑

n=0

bnTn(x), such that∫ 1

−1

(LuN (x)− f(x))ψmdx = 0,

m = 0, 1, 2, . . . , N − β,

N∑
n=0

bnB(Tn) = 0

(40)

where ψm is:

ψm(x) =
2

πcm
Tm(x)ω(x) =

2

πcm
Tm(x)

1√
1− x2

(41)

4. Application of Chebyshev Tau
Method

In order to solve the differential equation system (16)-
(20) regarding boundary condition (22) by CTM, we
expand the solution functions u0, w and φ

(i)
x , (i =

t, c, b) as a finite series of basis functions {Tn(x)}Nn=0

as given below:

(u0)N (x) =
N∑

n=0

bnTn(x),

wN (x) =
N∑

n=0

anTn(x), (42)

(φ(i)
x )N (x) =

N∑
n=0

cjnTn(x), i = t, c, b, j = 1, 2, 3·

We will need the first and second order derivatives
of (u0)N (x), (φ(i)

x )N (x), i = t, c, b and wN (x) as they
relate to Tn(x). To this end, equations (36) will be
used.
d(u0)N

dx
=

N−1∑
n=0

b(1)n Tn(x),
d2(u0)N

dx2
=

N−2∑
n=0

b(2)n Tn(x), (43)

d(φ
(i)
x )N
dx

=

N−1∑
n=0

cj(1)n Tn(x),

d2(φ
(i)
x )N

dx2
=

N−2∑
n=0

cj(2)n Tn(x), i = t, c, b, j = 1, 2, 3,

(44)

dwN

dx
=

N−1∑
n=0

a(1)
n Tn(x),

d2wN

dx2
=

N−2∑
n=0

a(2)
n Tn(x)· (45)

we put

A =

N∑
n=0

AnTn(x), B =

N∑
n=0

BnTn(x),

D =
N∑

n=0

DnTn(x),

Ā =
N∑

n=0

ĀnTn(x), q(x) =
N∑

n=0

qnTn(x),

(46)

where

An =
2

πcn
(A, Tn(x))w, Bn =

2

πcn
(B, Tn(x))w,

Dn =
2

πcn
(D,Tn(x))w, (47)

Ān =
2

πcn
(Ā, Tn(x))w, qn =

2

πcn
(q(x), Tn(x))w.

The substitution of Eqs. (42) and (46) into the
system (16)-(20) yields an algebraic equation system.
The first step will be to take the inner product of the
obtained equation system with ψm(x) where

(Tn(x), ψm(x)) =
2

πcm

∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
dx

= δn,m, m = 0, 1, . . . , N − 2. (48)

Let

N = 3, q(x) = 1− 2x+ x2, ht = hb = 0.1

hc = 0.2, vt = vc = vb = 0.3,
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Et = 2, Ec = 1 + 0.6x− 0.2x2, Eb = 3

kw = ks = 0, (α(i)∆T + β(i)∆C) = 0, i = t, c, b.

Using the recurrence relationships for the first and
second derivative expansion coefficients from (36) and
orthogonality properties of the Chebyshev polynomi-
als, the resulted algebraic equation system leads to:
(2.81319)b2 + (1.97802)b3 + (4.39560× 10−2)c12

− (4.39560× 10−2)c22 − (6.59340× 10−2)c32

+ (1.31868× 10−1)b1 = 0,

(1.71428× 10)b3 + (1.05494)b2

+ (2.63736× 10−1)c13 − (2.63736× 10−1)c23

− (3.95604× 10−1)c33 − (8.79120× 10−2)b1

= 0,

(4.39560× 10−2)b2 + (2.93040× 10−3)c12

+ (4.39560× 10−3)c22 − (7.69231× 10−2)c10

− (7.69231× 10−2)a1 − (2.30769× 10−1)a3 = 0,

(2.63736× 10−1)b3 + (1.75824× 10−2)c13

+ (2.63736× 10−2)c23 − (7.69231× 10−2)c11

− (3.07692× 10−1)a2 = 0,

− (6.92307× 10−2)a1 − (9.23075× 10−2)a2

− (1.84615× 10−1)a3 + (2.78755× 10−2)c22

− (2.26373× 10−2)c21 + (6.59338× 10−3)c23

− (6.92307× 10−2)c20 − (4.39560× 10−2)b2

+ (4.39560× 10−3)c12 + (6.59340× 10−3)c32 = 0,

− (2.61538× 10−1)a2 − (1.95604× 10−2)c22

− (2.76923× 10−1)a3 − (4.61538× 10−2)a1

+ (1.48901× 10−1)c23 − (6.56776× 10−2)c21

− (4.61538× 10−2)c20 − (2.63736× 10−1)b3

− (2.63736× 10−2)c13 − (3.95604× 10−2)c33 = 0,

− (6.59340× 10−2)b2 + (6.59340× 10−3)c22

+ (4.39560× 10−3)c32 − (1.15385× 10−1)c30

− (1.15385× 10−1)a1 − (3.46155× 10−1)a3 = 0,

− (3.95604× 10−1)b3 + (3.95604× 10−2)c23

+ (2.63736× 10−2)c33 − (1.15385× 10−1)c31

− (4.61540× 10−1)a2 = 0,

− (1.50000) + (6.92306× 10−1)a3

+ (1.15385× 10−1)c31 + (3.46155× 10−1)c33

+ (1.84615× 10−1)c23 + (7.69231× 10−2)c11

+ (2.30769× 10−1)c13 + (4.61538× 10−2)a1

+ (9.84612× 10−1)a2 + (9.23075× 10−2)c22

+ (5.38461× 10−2)c21 + (4.61538× 10−2)c20 = 0,

2 + (4.61540× 10−1)c32 + (3.07692× 10−1)c12

+ (3.69230× 10−1)a2 + (2.46154× 10−1)c22

+ 6a3 − (3.07692× 10−2)a1 + (2.76923× 10−1)c23

+ (9.23076× 10−2)c21 − (3.07692× 10−2)c20 = 0 (49)

Using the Chebyshev expansions of (42), the
boundary condition (22) can be written as:

b0 − b1 + b2 − b3 = 0,

b0 + b1 + b2 + b3 = 0,

a0 − a1 + a2 − a3 = 0,

a0 + a1 + a2 + a3 = 0,

cj0 − cj1 + cj2 − cj3 = 0,

cj0 + cj1 + cj2 + cj3 = 0, j = 1, 2, 3.

(50)

The solutions to (49) plus the ten boundary equa-
tions (50) are

a = 10−1(−7.51587, 3.12334, 7.51587,−3.12334),

b = 10−2(9.55881× 10−1,−1.82028,

− 9.55881× 10−1, 1.82028),

c1 = (6.22902× 10−1,−2.46093,

− 6.22902× 10−1, 2.46093),

c2 = 10−1(−4.79992, 2.31853, 4.79992,

− 2.31853),

c3 = (6.33427× 10−1,−2.56253,

− 6.33427× 10−1, 2.56253).

(51)

The substitution of (51) into the (42) leads to

(u0)3(x) = 10−2((1.91176)− (7.28112)x

− (1.91176)x2 + (7.28112)x3),

(φ
(t)
x )3(x) = (1.24580)− (9.84372)x− (1.24580)x2

+ (9.8437)x3,

(φ
(c)
x )3(x) = 10−1((−9.59984) + (9.27412)x

+ (9.59984)x2 − (9.27412)x3),

(φ
(b)
x )3(x) = (1.26685)− (1.02501× 10)x

− (1.26685)x2 + (1.02501× 10)x3,

w3(x) = (−1.50317) + (1.2493)x+ (1.50317)x2

− (1.24934)x3.

(52)

5. Results and Comparisons

In this section, different examples of bi-directional
functionally graded (BDFG) porous sandwich beams
are investigated. To demonstrate the accuracy and re-
liability of the Chebyshev tau approach, the obtained
results of BDFG porous sandwich beam are compared
with the extracted results of ABAQUS software using
the finite element method. The following dimensionless
quantities are applied for presented results in which the
elastic moduli of the face sheets and external load are
normalized based on the elastic modulus of the core.

ū0 =
u0
hc

× 106, w̄ =
w

hc
× 106,

s̄x =
sx
P
, q̄ =

q

Ēc
× 106,

k̄w =
kwhc
Ēc

, k̄s =
ks
LĒc

.

(53)
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In all examples, it is assumed that q = (1 − 2x +
x2)Ēc, Et = 2Ēc, Eb = 3Ēc, vt = vc = vb = 0.3,
ht = hb = 0.1, hc = 0.2 and L = 2. Moreover, kw = ks
and ∆T = ∆C = 0 unless stated otherwise.
Example 1. In this example, the results of FG three-
layerd sandwich beams subjected to nun-uniform load
are obtained. Obtained results of sandwich beam with
FG core are presented and a comparison with the ex-
tracted results of ABAQUS software are performed.
The variation of the material properties of core in the
axial direction is assumed as Ec = (1+0.6x−0.2x2)Ēc

in which Young’s modulus of core vary from Ec =
0.2Ēc to Ec = 1.4Ēc as parabolic function. In the
finite element simulation of functionally graded beam
using the ABAQUS software, variations of the mate-
rial properties are modeled by dividing each layer into
a sufficient number of sections (e.g., 40 sections) to
estimate the gradual variations of the material prop-
erties. Also, the width of the considered beam in the
ABAQUS software is 0.1. First of all, a sensitivity anal-
ysis of the number of terms of the finite series solution
had to be conducted to achieve reliable and sufficiently
accurate results. Table 1 shows the values of transverse
deflection of clamped-clamped sandwich beam for dif-
ferent amounts of terms of the finite series (N).

It can be seen that increasing the number of poly-
nomial items improves the accuracy of the results and
leads to convergent solutions at N = 15. It is observed
that choosing 15 terms of the finite series solution may
lead to a convergent solution.

However, 20 terms of the finite series solution are
used for solving the governing differential equations to
ensure that the convergence may not be altered by
various conditions of the present or next examples.
The extracted results of sandwich beam under non-
uniform load based on the CTM are compared with
those obtained based on the finite element method us-
ing the ABAQUS software. In this regard, the sand-
wich beam results with axial FG core are extracted
based on the 3D theory of elasticity from ABAQUS
software. To enhance accuracy of the results, C3D20R
20-node quadratic brick elements are used. In Fig.

2, discretization of the sandwich beam is shown and
153600 elements are employed in discretization of the
beam.

Fig. 2. Three-dimensional modeling of beam using
ABAQUS software.

Results of transverse deflections of sandwich beam
with homogeneous and axial FG core are presented in
Fig. 3. The results of FG sandwich beam based on
the considered variation of the material properties in
the axial direction is different from the results of ho-
mogeneous sandwich beam and the lateral deflections
of the plate with axial FG core is higher than the ho-
mogeneous ones, due to the lower rigidity. It can be
observed that the present results are in good agree-
ment with the results of the FEM. Also, based on the
imposed non-uniform load and material properties dis-
tribution of FG sandwich beam, the maximum lateral
deflection location moves to the left side of the beam
and it does not occur at the middle point of the beam.

Table 1
Effects of choosing different number of terms (N) in the finite series of the solution on results of transverse deflection of FG sandwich
beam.

X
N 2 5 10 15 18 20

-1 0 0 0 0 0 0
-0.8 -0.5324 -2.036 -1.8898 -1.8815 -1.8815 -1.8815
-0.6 -0.9465 -4.9501 -3.6511 -3.6653 -3.6653 -3.6653
-0.4 -1.2420 -7.2659 -4.7116 -4.7111 -4.7111 -4.7111
-0.2 -1.4198 -8.2680 -4.9910 -4.9740 -4.9740 -4.9740
0 -1.4789 -7.8331 -4.5508 -4.5559 -4.5559 -4.5559
0.2 -1.4198 -6.2628 -3.6310 -3.6524 -3.6524 -3.6524
0.4 -1.2423 -4.1125 -2.5132 -2.5072 -2.5072 -2.5072
0.6 -0.9465 -2.0229 -1.3734 -1.3698 -1.3698 -1.3698
0.8 -0.5324 -0.5509 -0.4625 -0.4662 -0.4662 -0.4662
1 0 0 0 0 0 0
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Fig. 3. The lateral deflections of the sandwich beams
with homogeneous and axial FG core.

The transverse distributions of the in-plane dis-
placement and stress of the sandwich beams with axial
FG core are presented in Figs. 4 and 5 (at x = −0.6
and x = 0.6), respectively. It is observed that the
present results are in good agreement with the ex-
tracted results using the ABAQUS software. The re-
sults are obtained based on a 2D sandwich plate theory
(the layerwise theory) and the finite element results of
the ABAQUS software are extracted based on the 3D-
elacticity theory, so little difference is expected in the
comparisons.

Fig. 4. The transverse variations of the in-plane dis-
placement of the FG sandwich beams.
Example 2. In this example, the results of the
FGB porous sandwich beam are presented. To cover
both the axial and transverse variations of core poros-
ity, elastic moduli of the core is defined as: Ec =
1−s(1+0.6x−0.2x2). Two different patterns for trans-
verse variations of porosity (including uniform s = s0

and non-uniform s = s0 cos

[(π
2

) z

hc
+
(π
4

)]
distribu-

tions) are considered. The lateral deflections of the
FGB porous sandwich beams for four values of the
porosity parameter: s0 = 0.1, 0.2, 0.3, 0.4 are presented
in Fig. 6. It is observed that increasing the porosity
of sandwich beam leads to an increase in the lateral
deflections, due to a decrease in the beam rigidity.

Fig. 5. The through-the-thickness variations of the
in-plane stress of the FG sandwich beams.

The transverse variations of the in-plane displace-
ment and stress at x = 0.6 are plotted in Figs. 7 and
8, respectively. It can be seen from Fig. 7 (also from
Fig. 4), the local rotations of each layer are differ-
ent, and thus the traditional equivalent plate theories
cannot predict the transverse variations of the in-plane
displacement of sandwich panels with various material
properties of the layers. The top face sheet is stiffer
than the bottom face sheet, and therefore the larger in-
plane stresses have occurred in the bottom face sheet.
It can be observed that increases in the porosity param-
eter of FGB porous core reduces the resulting in-plane
displacement and the changes in the core displacements
are more significant. Fig. 8 shows that increases in the
porosity parameter (s0) reduced the in-plane stress of
core and face sheet.
Example 3. In this example, FGB porous sandwich
beam resting on the Winkler/Pasternak foundation un-
der non-uniform load is analyzed. The effects of the
Winkler/Pasternak foundation on the lateral deflec-
tions of the FGB sandwich beams are shown in Fig. 9.
As expected, increasing the Winkler/Pasternak foun-
dation reduces the lateral deflection of FGB porous
sandwich beam. The transverse variations of the in-
plane displacement and the stress of FGB porous sand-
wich beam for different values of kw and ks are pre-
sented in Figs. 10 and 11, respectively. It can be seen
that increases in the rigidity of the Winkler/Pasternak
foundation reduces the resulting in-plane displacement
and stress.
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Fig. 6. The lateral deflections of FGB porous sandwich beam, a) Pattern A: s = s0 and b) Pattern B:

s = s0 cos

[(π
2

) z

hc
+
(π
4

)]
.

Fig. 7. The transverse variations of the in-plane displacement of FGB porous sandwich beam, a) Pattern A:

s = s0 and b) Pattern B: s = s0 cos

[(π
2

) z

hc
+
(π
4

)]
.

Fig. 8. The through-the-thickness distribution of the in-plane stress of FGB porous sandwich beam, a) Pattern

A: s = s0 and b) Pattern B: s = s0 cos

[(π
2

) z

hc
+
(π
4

)]
.
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Fig. 9. Effects of Winkler/Pasternak foundation on
the lateral deflection of the FGB sandwich beams.

Fig. 10. Effects of Winkler/Pasternak foundation on
the in-plane displacement of the FGB sandwich beams.

Fig. 11. Effects of Winkler/Pasternak foundation on
the in-plane stress of the FGB sandwich beams.

Example 4. In-plane stress analyses of FGB porous
sandwich beam in hygrothermal environment are con-
ducted in this example. To extract more general re-
sults, asymmetric elastic moduli of the core is consid-
ered as:

Ec = 1− 0.3 cos

[(π
2

) z

hc
+

(π
4

)]
(1 + 0.6x− 0.2x2)

The transverse variations of the in-plane stress of
the FGB porous sandwich beam for different values of
hygrothermal parameters at x = −0.6 and x = 0.6,
are depicted in Fig. 12. Due to the same effects of the
thermal and moisture absorption expressions on the
sandwich beam behavior, results are derived for vari-
ous magnitudes of the ∆(TC) = (α(c)∆T + β(c)∆C).

Fig. 12. The through-the-thickness variations of the in-plane stress of FGB porous sandwich beam at a) x = 0.6
and b) x = −0.6.
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Fig. 13. The through-the-thickness variations of the in-plane stress of FGB porous sandwich beam under
Winkler/Pasternak foundation at a) x = 0.6 and b) x = −0.6.

Results are presented for the five magnitudes as:
∆(TC) = −0.5,−0.2, 0, 0.2, 0.5. Also, the results of the
FGB porous sandwich beam under Winkler/Pasternak
foundation (kw = 0.1, ks = 0.02) are shown in Fig.
13. The results show that due to the hygrothermal
effects, the changes in the core are significant. It is
obvious that by increasing the temperature gradients
and moisture contents (∆(TC)) from -0.5 to 0.5, the
in-plane stress of the core change from tensile stress to
compressive stress.

It may lead to increased or decreased jumps at the
interfaces between face sheets and core. For example,
it can be observed from Fig. 13a that increasing the
temperature gradients and moisture contents lead to
increases in the jumps at the interfaces between top
face sheet and core, and consequently decreases the
jumps at the interfaces between bottom face sheet and
core. However, the curve slopes are less sensitive to
the hygrothermal loads.

6. Conclusion

For the first time, displacement and stress analysis of
the bi-directional functionally graded (BDFG) porous
sandwich beams are examined by using the Chebyshev
tau method. The analyses are performed using the
layerwise theory rather than the traditional equivalent
single-layer theories whose results may not be reliable
for the sandwich plates, in the majority of the general
cases. Based on the presented analyses:

• Sandwich beams under non-uniform load can be
analyzed.

• The material properties of each layer of sandwich
beam can be varied continuously in the axial and
thickness directions.

• The material properties can be affected by the
variation of temperature and moisture.

• The effects of Winkler/Pasternak foundation on
the sandwich beam can be examined.
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