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Abstract

In this paper, the static response of functionally graded piezoelectric plates
under mechanical, electrical, and thermal loads is studied using a meshless
method. The Radial Point Interpolation Method (RPIM) is used to create
the shape function to approximate field variables. Given that RPIM shape
functions pass Kronecker delta condition, boundary conditions can be applied
directly. The First-order Shear Deformation Plate Theory (FSDT) is used to
model the behavior of the plate. Power law distribution through the thickness is
considered for all of mechanical, thermal, and piezoelectric properties. Effective
parameters on deflection and stresses of Functionally Graded Piezoelectric
Material (FGPM), including different electrical and mechanical loads, thermal
loads, thickness, and different boundary conditions are studied. In this paper,
the effect of power law index on the deflection and stresses of the functionally
graded piezoelectric plate under external loads is investigated and different
results are obtained in each case of mechanical, electrical, and thermal loading.
By analyzing the results of this paper, the effective structure design and
sensor/actuator behavior of the plate subjected to thermal and electrical
loading could be obtained.

Nomenclature

Ri(x) Radial basis function Φ Shape function matrix
pj(x) Polynomial basis function Lx Length of plate
bj Unknown coefficients of radial basis Ly Width of plate
ai Unknown coefficients of polynomial basis nx Number of nodes in x direction
ns Number of radial basis ny Number of nodes in y direction
m Number of polynomial basis αc Constant value that controls the value of Cd

q MQ shape parameters Dl Electrical displacement
Vc Volume fractions of top surface Cijkl Elasticity tensor
Vm Volume fractions of bottom surface elij Piezoelectric constant tensor
n Power law index θ Temperature difference
h Thickness of the plate pl Pyroelectric vector
σij Stress tensor klk Dielectric permittivity coefficient tensor
εkl Strain tensor αkl Thermal expansion coefficient tensor
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Nomenclature
Ek Electrical field u0, v0, w0 Displacement of mid-plane of plate
βx Rotation of transverse normal about y-axis hp Thickness of the piezoelectric layer
βy Rotation of transverse normal about x-axis τ⃗ Surface tractions
Rϕ Electric field operator b⃗ Body forces
φ Shape function λij Thermal expansion tensor
uh(x) Approximate function RQ Radial moment matrix
Cd Spacing between the nodes

1. Introduction

Nowadays, the Finite Element Method (FEM) is a
powerful numerical method in mechanical computa-
tion problems. This method has been successful in
many mechanical areas with both academic and in-
dustrial applications. Since the FEM is a mesh-based
method, it has some drawbacks. For instance, in the
large deformation problems which are caused due to
distortion elements and may have a negative effect on
accuracy, the extraordinary mesh distortion decreases
the FEM accuracy and the FEM solution stability [1].
In order to reduce FEM drawbacks, Meshless Meth-
ods (MMs) were born to eliminate part of the diffi-
culties associated with dependency on a mesh to con-
struct the approximation field variable [2]. In recent
decades, the Functionally Graded Piezoelectric (FGP)
structures have been used in various engineering appli-
cations due to their inherent electro-mechanical cou-
pling, such as automotive actuators, sensors, and trans-
ducers [3-6]. FGPM plates’ thermo-electro-mechanical
properties vary smoothly through the thickness [7].

Many studies have presented new works on the
analysis of the intelligent materials under mechanical,
electrical, and thermal loadings using meshless meth-
ods. Qirong et al. [8] analyzed simply supported piezo-
electric beam under uniformly load distribution using a
closed-form solution. Also, some researchers have used
closed-form solutions in the past years [9, 10].

Ferreira et al. [11] presented the static behavior
of FGM plates using the collocation method by em-
ploying radial basis functions. They used third-order
shear deformation theory to simulate the plate’s ki-
netic. By using the Timoshenko beam theory, Yang
and Xiang [12] studied static and free vibration of the
FGPM plate under thermos-electro-mechanical load-
ings. In their study, the influence of boundary con-
ditions, power law index, and thermal loading on the
behavior of the FGPM plate was studied. Chen et
al. [13] analyzed buckling of piezoelectric FGM plates
by using the Element Free Galerkin (EFG) method.
They assumed that applied heat and voltage distribu-
tion are non-uniform. Yan et al. [14] analyzed the
curved FGP plate by using Airy stress function un-
der electro-thermal loadings. Komeili et al. [15] stud-
ied the static bending of FGPM beams under com-

bined thermo-electro-mechanical loading. They com-
pared the accuracy and the reliability of each Euler
Bernoulli Theory (EBT), First-order Shear Deforma-
tion Theory (FSDT) and Third-order Shear Deforma-
tion Theory (TSDT). Singh and Shukla [16] presented
nonlinear bending response of FGM plates under var-
ious lateral loadings. They used a multi-quadric ra-
dial basis function method to approximate field vari-
ables. Staňák et al. [17] presented the application
of the patch test for Meshless Local Petrov Galerkin
(MLPG) analysis of the FGPM circular plate. They
used a patch test to address the converge of the MLPG
method. Sladek et al. [18] analyzed the bending
behavior of a functionally graded piezoelectric circu-
lar plate based on the local Petrov-Galerkin method.
They assumed material properties are varying along
with the plate thickness continuously. They consid-
ered mechanical and thermal loads with stationary and
transient dynamic conditions. Zhu et al. [19] pre-
sented the nonlinear behavior of FGM plates in ther-
mal environments. They used moving Kriging inter-
polation to develop a local Petrov–Galerkin method.
Sator et al. [20, 21] investigated the static response of
thin and thick FGM plates using a meshless method.
They used a strong formulation to drive governing
equations and boundary conditions. To obtain gov-
erning equations and boundary conditions at nodal
points, they used a Meshless Approximation Method
(MLS method) for primary field variables. Meshless
method based on the local Petrov-Galerkin approach
was utilized for the bending of cylindrical piezoelec-
tric plates under electro-mechanical loading by Staňák
et al. [22]. They constructed local integral equations
from the weak form of governing PDEs that were de-
fined over local subdomains. They used the Moving
Least Squares (MLS) approximation scheme to approx-
imate field variables, and used the Heaviside unit step
function as a test function. They also analyzed FGPM
using the same method [23]. Li et al. [24] presented
the static analysis of piezoelectric structures using a ra-
dial basis function on partition of unity method. They
derived system equations of the RBF-PUM using the
variational principle. As this method possesed delta
function property, the boundary conditions can be im-
plemented easily. Three-dimensional meshfree analy-
ses of thick FGPM plate using MLS shape functions
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was conducted by Mikaeeli and Behjat [25]. Barati
and Zenkour [26] studied the vibrational behavior of
the FGP plate using refined four-variable plate theory.
They investigated the effect of applied voltage, bound-
ary conditions, thermal loading, and power law index
on vibrational behavior of the FGP plate. Buckling of
FGPM plate based on refined four-variable plate theory
was studied by Barati et al. [27]. They used Three-
dimensional Element Free Galerkin (EFG) method for
static analysis of thick FGPM plate considering mate-
rial properties of plate varying smoothly through the
thickness by an exponential function. The 3D MLS ap-
proximation was used to calculate the shape functions
of field variables. Phung Van et al. [28] presented a
nonlinear transient dynamic analysis of Functionally
Graded Carbon Nanotube Reinforced Composite (FG-
CNTRC) Nano plates under transverse uniform load
in thermal environments using IGA. They considered
that material properties varied smoothly through the
thickness. Zenkour and Aljadani [29] studied thermo-
electrical buckling of the FGPM nanoscale plate us-
ing Eringen’s nonlocal elasticity theory. They used
Navier’s procedure to obtain the exact solution. The
effect of nanoscale, thermal loading, power law index,
and applying voltage on the buckling value were inves-
tigated. Zhang et al. [30] presented a new model for
the geometrically nonlinear analysis of FG composite
plates with piezoelectric layers. They used the eight-
node quadrilateral plate element based on FSDT for
nonlinear static and dynamic analyses.

Although lots of studies have been conducted on
FGPM plates, most of them have disregarded the effect
of power law index together with various coupled elec-
trical, mechanical, and thermal loadings and bound-
ary conditions. Also, there are only a few papers that
have analyzed thermo-electro-mechanical behavior of
the FGPM plate using meshfree methods. Therefore,
one of the novelties of this paper is the analysis of a
Functionally Graded Piezoelectric Material (FGPM)
plate using meshfree method based on RPIM under
thermos-electro-mechanical loadings. A second nov-
elty is the study of the effect of boundary condition
and thermos-electro-mechanical loadings on the opti-
mum point of the FGPM plate versus power law in-
dex. The effect of different electrical, mechanical, and
thermal loading, thickness and boundary conditions on
the deflection of the plate is investigated in various
power law indices. It is shown that the maximum de-
flection of the plate with different boundary conditions
and electro-thermal loadings is observed in a specific
power law index, and thus the proper value for this
index can be selected to optimize the overall behavior
of the smart structure. In other words,via using these
optimum points, it can design sensors and actuators ef-
ficiently. Also, by using the RPIM method, the stresses
can be obtained in this paper in a simple manner.

2. Theoretical Formulation

2.1. Formulation Using Radial-polynomial Ba-
sis

A support domain that has a set of arbitrarily dis-
tributed nodes is considered (Fig. 1).

Fig. 1. Domain representation and support domain of
2D model [31].

The approximate function uh(x) can be estimated
to all values of nodes within the support domain based
on Radial Point Interpolation Method (RPIM) using
radial basis function Ri(x) and polynomial basis func-
tion pj(x) [32]. Evaluated nodal value at interest node
xi at the support domain can be expressed as [31]:

uh(x) =

ns∑
i=1

Ri(x)ai +

m∑
j=1

pj(x)bj

= R⃗
T
(x)a⃗+ p⃗T(x)b⃗

(1)

In which, ai is the unknown coefficients of basis Ri(x),
and bj is the unknown coefficients of polynomial basis
pj .

The number of radial basis ns is equal to the num-
ber of nodes in the supporting domain, and the number
of polynomial basis m is chosen according to the prob-
lem’s conditions [33].

Vector of radial basis “R” and polynomial basis “p”
are defined as:

R⃗T(x) = {R1(x), R2(x), · · · , Rns
(x)}

p⃗T = {p1(x), p2(x), · · · , pm(x)}
(2)

Unknown coefficients ai, bj are estimated by interpo-
lating all points on the supporting domain. Interpolate
function of k is defined as:

uk = u(xk, yk) (3)

=

ns∑
i=1

aiRi(xk, yk) +
m∑
j=1

bjpj(xk, yk) k = 1, 2, · · · , ns

Or in matrix form:

U⃗s = RQ(x)a⃗+PM(x)b⃗ (4)
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in which, Us is a vector that contains all field variables
of the supporting domain.

In the above equation, the number of unknowns is
ns +m. For uniqueness reasons, polynomial basis re-
sults should satisfy the following condition [34]:

ns∑
i=1

pj(xi, yi)ai = 0 j = 1, 2, · · · ,m (5)

where Eq. (5) is a homogenous equation. By combin-
ing Eq. (4) with Eq. (5), we have:[

RQ Pm

PT
m 0

]{
a⃗

b⃗

}
=

{
U⃗s

0

}
(6)

Or

G

{
a⃗

b⃗

}
=

{
U⃗s

0

}
(7)

in which moment matrix “RQ” that forms radial basis
is defined as:

RQ =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
... . . . ...

R1(rn) R2(rn) · · · Rn(rn)

 (8)

where

rk = [(xk − xi)
2 + (yk − yi)

2]
1
2 (9)

Moment matrix Pm is a ns × m matrix and can be
defined as:

Pm =
P1(x1, y1) P2(x2, y2) · · · Pm(x1, y1)
P1(x2, y2) P2(x2, y2) · · · Pm(x2, y2)

...
... . . . ...

P1(xn, yn) P2(xn, yn) · · · Pm(xn, yn)


ns×m

(10)

Since RQ is symmetric, the matrix G is symmetric,
too. If the inverse of matrix G is available, the unique
answer of unknown coefficients a, b can be obtained
by multiplying that by the vector of variables.{

a⃗

b⃗

}
= G−1

{
U⃗s

0

}
(11)

According to Eq. (5) and Eq. (6), the coefficient is
obtained as:

a⃗ = R−1
Q U⃗s −R−1

Q Pmb⃗ (12)

By substituting Eq. (12) with Eq. (5), the following
equation is obtained:

b⃗ = SbU⃗s

Sb =
[
PT

mR−1
Q Pm

]−1
PT

mR−1
Q

(13)

By substituting Eq. (13) with Eq. (12), the unknown
coefficient is obtained:

a⃗ = SaU⃗s

Sa = R−1
Q

[
1−PmSb

]
= R−1

Q −R−1
Q PmSb

(14)

Finally, Eq. (1) is obtained as:

u(x) =
[
R⃗T(x)Sa + p⃗T(x)Sb

]
U⃗s = Φ⃗(x)U⃗s (15)

In which, Φ is a shape function matrix that contains n
shape functions:

Φ⃗(x) =
[
R⃗T(x)Sa + p⃗T(x)Sb

]
=

[
ϕ1(x), ϕ2(x), · · · , ϕi(x), · · · , ϕns

(x)
] (16)

In this paper, MQ radial basis has been used to con-
struct the shape functions:
Ri(x, y) = (r2i + C2

d)
q

=
[
(x− xi)

2 + (y − yi)
2 + C2

d

]q
(MQ)

(17)

where q and Cd are shape parameters which are se-
lected by the user. Cd depends on spacing between the
nodes and can be explained as:

Cd = αc

√(
Lx

nx

)2

+

(
Ly

ny

)2

(18)

where Lx and Ly are the length and width of plate, re-
spectively. nx and ny are the number of nodes in the
sides of the plate along the x and y direction , respec-
tively. αc is a constant that controls the value of Cd.
In this paper, q and αc have been considered “1.03”
and “2”, respectively.

2.2. Functionally Graded Piezoelectric Plates

There are various methods for modeling functionally
graded materials. In this paper, a simple power law
method was used for the modeling problems. In this
method, the volume fraction of material was used as
following to illustrate the properties of model [35-37]:

Vc + Vm = 1 (19)

in which, Vc and Vm are the volume fractions of top
surface material and bottom surface material. By us-
ing power law modeling, we have:

Vc =

(
z

h
+

1

2

)n

, n ≥ 0, − h

2
≤ z ≤ h

2
(20)

in which, n is power law index and h is thickness of the
plate.
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2.2.1. Constitutive Equations of Piezoelectric

The constitutive equation of a piezoelectric material
that was obtained from linear thermo-piezoelectricity
theory can be expressed as [38]:

σij = Cijklεkl − eijkEk − λijθ

Dl = elijεij + klkEk + plθ
(21)

where σij and εkl are tensors of stress and strain, Ek is
electrical field vector, Dl is electrical displacement vec-
tor, Cijkl is elasticity tensor, elij is piezoelectric con-
stant tensor, θ is temperature difference, pl is pyroelec-
tric vector and klk is dielectric permittivity coefficient
tensor. Thermal expansion tensor can be written as:

λij = Cijklαkl (22)

in which, αkl is thermal expansion coefficient tensor.

2.2.2. Displacements and Strains

Based on the First-order Shear Deformation Theory
(FSDT), the displacement field of an arbitrary point
in the plate can be expressed as [39]:

u(x, y, z) = u0(x, y) + zβx(x, y)

v(x, y, z) = ν0(x, y) + zβy(x, y)

w(x, y, z) = w0(x, y)

(23)

where, the variables u, v and w are displacement of any
point of plate and u0, v0, w0 are displacement of mid-
plane of plate and βx and βy are rotation of transverse
normal about y-axis and x-axis, respectively.
The strains based on the displacements field in Eq.
(24) are given by:

εx =
∂u0
∂x

+ z
∂βx
∂x

, εy =
∂v0
∂y

+ z
∂βy
∂y

γyz =
∂w0

∂y
+ βy, γxz =

∂w0

∂x
+ βx

γxy =
∂u0
∂y

+
∂v0
∂x

+ z

(
∂βx
∂y

+
∂βy
∂x

)
(24)

The electric field is defined as the following equation:

[
E⃗
]
=


−∂φ
∂x

−∂φ
∂y

−∂φ
∂y

 =
[
R⃗φ

]
{φ} (25)

in which, Rϕ is the electric field operator and E⃗ is the
electrical field. In this paper, it is assumed that the

electric field has a constant value along the thickness
[15, 40-43], and therefore this quantity can be defined
as:

Ez = − φ

hp
, Ex = Ey = 0 (26)

where, φ and hp are the electric potential and the thick-
ness of the piezoelectric layer, respectively.

In this paper, it is assumed that the electric poten-
tial has a constant value along the thickness. Equilib-
rium equation of the plate is derived by using conser-
vation law of momentum and electric charge [44]:

δuTψu = −
∫
v

[δε]T [σ]dv +

∫
v

δu⃗T b⃗dv

+

∫
Γq

δu⃗T τ⃗ dΓ = 0

δφTψe = −
∫
v

δETDdv +

∫
Γq

δφT qdΓ = 0

(27)

In which, ψu and ψe are differences between internal
and external forces and charges respectively, τ⃗ and b⃗
are surface tractions on the surface Γq and body forces,
q is the applied electrical charge and v is the volume
of plate. By substituting Eq. (27) into Eq. (24) the
variational form of conservation equations are derived
as:

−
∫
A0

(
δε⃗Ta

[
Cs

]
ε⃗a + δε⃗Tb

[
Eeθ

]
εeθ

)
dA

+

∫
A0

(
δuT bT + δβT bT

)
dA+

∫
Γτ

δūT τ̄ dτ = 0

−
∫
A0

(
δE

[
EG

]
ε⃗b + δE

[
GE

]
εeθ

)
dA

+

∫
Γq

δφ̄q̄dΓ = 0

(28)

in which, ε⃗a, ε⃗b, εeθ, Cs, Eeθ, EG are described as fol-
lows:

ε⃗a =

 ε0

k0

ε0s

 , ε⃗b =

[
δε0

δK0

]
, εeθ =

[
E
θ

]

GE =

[
[Q] 0
0 [T ]

]

EG =

[
[E⃗] 0

0 [Ê]

]

EG =

[
[E⃗] −[Θ̄]

[Ê] −[Θ̂]

]

[Cs] =

 [A] [B] 0
[B] [D] 0
0 0 [As]



(29)
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where [A], [B], and [D] are extensional, bending-
extensional coupling, and bending stiffness matrices,
respectively and [Ē], [Ê], [Θ̄], [Θ̂], [T ], and [Q] can be
defined as:

[A] =

∫ h
2

−h
2

[C]dz, [B] =

∫ h
2

−h
2

z[C]dz,

[D] =

∫ h
2

−h
2

z2[C]dz [Ē] =

∫ h
2

−h
2

[ē]dz,

[Ê] =

∫ h
2

−h
2

z[ē]dz, [Θ̄] =

∫ h
2

−h
2

[λ̄]dz,

[Θ̂] =

∫ h
2

−h
2

z[λ̄]dz, [Q] =

∫ h
2

−h
2

[ε̄]dz,

[T ] =

∫ h
2

−h
2

[p̄]dz

(30)

2.3. RPIM Modeling

Using RPIM shape functions, the field variables in the
support domain can be defined by the following equa-
tions:

u0(x, y) =

n∑
i=1

ϕi(x, y)u0i

v0(x, y) =
n∑

i=1

ϕi(x, y)v0i

w0(x, y) =

n∑
i=1

ϕi(x, y)w0i

βx(x, y) =
n∑

i=1

ϕi(x, y)βxi

βy(x, y) =
n∑

i=1

ϕi(x, y)βyi

φ(x, y) =
n∑

i=1

ϕi(x, y)φi

(31)

where, ϕi is the shape function, u, v, w, βx, βy, φ are
the nodal values of displacements, rotations and elec-
tric potential in the plate, and n is the number of nodes
in the support domain. In addition, temperature in the
element field is described as follows:

θ(x, y) =

n∑
i=1

ϕi(x, y)θi (32)

where, θi is the nodal value of temperature in the plate.
Also, strain-displacement relations in matrix form

can be written as:
[ε] = [Bu]{u}

= [Ra]{u}+ z[Rb]{u}+ [Rs]{u}
(33)

where, [Ra], [Rb], [Rs] are strain operators based on
the displacements-strain relations and can be defined
as follows:

[Ra] =


∂ϕi
∂x

0 0 0 0

0
∂ϕi
∂y

0 0 0

∂ϕi
∂y

∂ϕi
∂x

0 0 0



[Rb] =


0 0 0

∂ϕi
∂x

0

0 0 0 0
∂ϕi
∂y

0 0 0
∂ϕi
∂y

∂ϕi
∂x



[Rs] =

 0 0
∂ϕi
∂x

1 0

0 0
∂ϕi
∂y

0 1



(34)

Combining Eq. (33) with Eq. (28), and integrating
through A0, the final equation of motion of plate in the
matrix form can be obtained as:

[Kdd][U⃗ ] + [Kde][φ⃗
s] + [Kde][φ⃗

a]− [Kdθ][θ⃗] = [F ] (35)

[Ked][U⃗ ]− [Kee][φ⃗
s]− [Kee][φ⃗

a] + [Kdθ][θ⃗] = 0 (36)

where submatrices Kdd, Kde and Kee indicate the elas-
tic, piezoelectric, and permittivity stiffness matrices;
and Kdθ and Keθ are the coupled thermal expansion
and pyroelectric stiffness matrices of the structure.
These matrices are expressed as:

[Kdd] =

∫∫
Ae

(
[Ra]

T [A][Ra] + [Ra]
T [B][Ra]

+ [Rb]
T [B][Ra] + [Rb]

T [D][Rb]

+ [Rs]
T [As][Rs]

)
|J |dA (37)

[Kde] =

∫∫
Ae

(
[Ra]

T [Ē][Rφ] + [Rb]
T [E][Rφ]

)
|J |dA

[Kee] =

∫∫
Ae

(
[Rφ]

T [G][Rφ]
)
|J |dA

[Kdθ] =

∫∫
Ae

(
[Ra]

T [Θ̄][Rθ] + [Rb]
T [Θ̂][Rθ]

)
|J |dA

The five degrees of freedom including displacements
and rotations were collected in nodal vector U⃗ . φ, θ are

Static Analysis of Functionally Graded Piezoelectric Plates under Electro-thermo-mechanical Loading Using a
Meshfree Method Based on RPIM: 93–106 98



the electric potential and applied temperature nodal
vectors, respectively. |J | is the Jacobian determinant
for numerical integration. To identify the sensory and
actuator voltage, s and a superscripts were used, re-
spectively.

By substituting electric potential in Eq. (35) to Eq.
(36), the final equation of the plate can be obtained as:

(
[Kdd] + [Kde][Kee]

−1[Ked]
)
[U⃗ ] =

[F ] + [Kdθ][θ⃗]− [Kde][Kee]
−1[Keθ][θ⃗]

+ [Kde][Kee]
−1[Kee][φ⃗

a]− [Kde][φ⃗
a]

(38)

As mentioned above, the radial point interpolation
method is used in this article to model the plate. In
this paper, each node has 6 degrees of freedom: three
displacements (u, v, w), two rotations (βx, βy), and one
electric potential “φ”. To model the FGPM plate,
15 × 15 nodes are distributed within the domain, and
thus the domain contains 225 nodes. This selection is
based on the convergence study of the plate response.
By using the conservation of momentum and electric
charge laws, the stiffness matrices are obtained. The
RPIM shape function satisfies Kronecker delta condi-
tion. Therefore, it can apply boundary conditions to
stiffness and force matrices directly as the finite ele-
ment method does. By applying boundary conditions,
the final set of equations for the solution is obtained.

3. Results

This study conducted a bending analysis of the FGPM
plate under mechanical and electrical loadings by di-
mensions of 50.8× 50.8mm2 (Fig. 2) . The plate con-
sists of FGMs in which the top surface of the plate is
(Poly Vinylidene Fluoride) (PVDF) rich and bottom
surface is PZT rich. The material properties of the
plate are listed in Table 1. In addition, for the sake of
convenience, in this paper, the clamped boundary con-
dition in the plate is shown by “C”, simply supported
is shown by “S”, and free is shown by “F”. Also non-

dimensional deflection is wmax10
3

h
, where wmax, and h

are maximum deflection and thickness of the FGPM
plate, respectively.

As it is known, there is a shear-locking phenomenon
in analysis of plates if the width to -thickness ratio(
h

a

)
of a plate becomes much lower h

a
= 0.02. To

handle shear-locking effect, there are several options.
Methods used in FEM can be applied to avoid shear
locking in meshfree methods. In addition, we can use
high-order basis functions to solve this problem. Us-
ing the derivatives of the deflection shape functions
as the shape functions for the rotations can eliminate
shear locking effect [32]. However, in this paper, a

square plate by dimensions with thickness to-width ra-
tio h

a
= 0.06 is analyzed. According to Liu [32], there

is no shear locking, if h
a
> 0.01, even if m m = 3 is

used. Therefore, in this paper, shear locking effect will
not occur.

Fig. 2. Geometry of the plate.

3.1. Comparison Study

To ensure the accuracy of the present meshfree RPIM
method in this article, a bimorph piezoelectric plate is
analyzed.

In this case, one clamped bimorph piezoelectric
beam under 1V electrical loading by dimensions of
100× 5× 1mm3 is statically analyzed, and the results
are compared with Cen et al.’s [45]. Fig. 3 shows the
dimensionless centerline deflection of the plate. It is
observed that the present RPIM method’s results have
good agreement with Cen et al.’s [45] study.

Fig. 3. Tip deflection of the bimorph beam and com-
parison.

In addition, to assure the accuracy of the results,
the convergence study of results is conducted in this
section. The convergence of the maximum deflection
of square FGPM plate with three types of boundary
conditions under uniform mechanical loading is carried
out (Fig. 4). It is observed that by using 15× 15 node
numbers, the results can reach good convergence.
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Fig. 4. Convergence study of RPIM method for dif-
ferent boundary conditions.

3.2. Thermal Loading

In this section, the deflection and stresses of the FGPM
plate in different boundary conditions, under thermal
loading are investigated. Fig. 5 shows the maximum
deflection of the FGPM plate under θ = 50◦C ther-
mal loading in three boundary conditions: “CCSS”,
“CFFF”, and “SSFF”.

It is seen from these figures that the maximum de-
flection of the FGPM plate occurs in “n = 0.6” in ther-
mal loading. It means the FGPM plate has maximum
deflection under thermal loading, which can be used for
the selection of optimum performance of sensors and
actuators in thermal environments. It is also seen that,
by increasing power index, the maximum deflection of

the plate increases and then decreases. This is due
to the difference in thermal expansion coefficients of
PZT and PVDF and the interaction between Young’s
modulus and thermal expansions coefficient of the two
materials. This behavior of the FGPM plate occurs
regardless of the mentioned boundary conditions.

Fig. 5. Maximum deflection of FGPM plate with 3mm
thickness versus power law index.

Fig. 6 shows the maximum deflection of FGPM
plate for three types of boundary conditions in differ-
ent thermal loadings. It is seen that, by increasing
thermal load, the maximum deflection of the plate in-
creases until “n = 0.6” and then decreases. Therefore
this value can be the optimum power index for all ther-
mal loadings.

Fig. 6. Maximum deflection of FGPM plate with 3mm thickness subjected to various thermal loads: a) CCSS
b) CFFF c) SSFF.
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Fig. 7 shows the distribution of normal and shear
stresses, σxx, and σxy, respectively through the thick-

ness of the plate at the point
(
a

2
,
b

2

)
under uniform

θ = 10◦C thermal loading. It is observed that when
plate is homogeneous (n = 0), the normal stress σxx
is constant through the thickness. When (n = 0), the
matrix [Θ̂] = 0, and therefore there is no deflection, and
normal stresses will be constant through the thickness.
Increasing power law index value changes the distri-
bution of normal stress changes. It is seen that the
manner of stress distribution depends on the bound-
ary conditions at thermal loadings.

3.3. Electrical Loading

In this section, the effect of electrical load on the de-
flection and stresses of the FGPM plate is shown, and
the static response of the system subjected to electrical
loads is investigated. Fig. 8 shows non-dimensional

maximum deflection of the FGPM plate under elec-
trical load with different boundary conditions. It is
seen that, by increasing the power law index, maxi-
mum deflection increases and then decreases. This phe-
nomenon is because of differences between piezoelectric
constants of PZT and PVDF and the interaction be-
tween piezoelectric constant and Young’s modulus of
these materials. It is also seen from these figures, the
maximum deflection in all cases occurs at power law
value of “n = 0.3”. Fig. 9 illustrates maximum deflec-
tion of the centerline of the FGPM plate for different
electrical loadings. It is also seen that power index re-
lated to maximum deflection of FGPM plate does not
change and occurs for all cases in “n = 0.3”.

Fig. 10 shows the distribution of normal stresses
σxx and shear stresses σxy through the thickness of the

plate at the point
(
a

2
,
b

2

)
under uniform 80V electrical

loading.

Fig. 7. Normal and shear stresses of FGPM plate with various power index law subjected to θ = 10◦C thermal
loading: a) σxx, b) σxy.
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It is obvious that when a FGPM plate is homo-
geneous (n = 0), the normal stress σxx is constant
through the thickness. When (n = 0), the matrix [Ê]
is equal to zero, and thus there are constant normal
stresses through the thickness. Increasing the power
law index value changes the distribution of normal
stress. The manner of stress distribution depends on
boundary conditions at thermal loadings.

3.4. Combined Electrical and Mechanical Load-
ing

Fig. 11 illustrates the effect of the applied voltage
on non-dimensional maximum centerline deflection of
the FGPM plate. This plate which has three bound-
ary conditions (CCSS, CFFF, SSFF) is subjected to
1KN/m2 uniform loading. It is seen that applying the
voltage of 80V decreases deflection for lower power in-
dex “n”, but after about n = 10, the effect of applied
voltage is not significant. According to these figures, by
increasing “n”, the deflection of plate decreases given
that by increasing n, stiffness of the plate increases.
Fig. 11 gives a detailed view of the “SSFF” boundary
condition of the FGPM plate up to power law index of
“2”.

Fig. 12 depicts the through-the-thickness distribu-
tions of the normal stresses σxx, and transverse shear

stresses σxz in the middle point
(
a

2
,
b

2

)
of the FGPM

plate under the uniform mechanical loading. From this
figure, it is observed that when “n = 0”, the normal
stress σxx is linear through the thickness, but by in-
creasing power law index, the distribution of normal
stress changes. The maximum compressive stresses un-
der mechanical loadings occur at a point on the top
surface, and the maximum tensile stresses occur, at a
point on the bottom surface of the FGPM plate.

Fig. 8. Centerline deflection of FGPM plate with dif-
ferent boundary conditions subjected to electrical load-
ings.

Fig. 9. Centerline deflection of FGPM plate with 3mm thickness subjected to different electrical loads: a)
CCSS b) CFFF c) SSFF.
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Fig. 10. Normal and shear stresses of FGPM plate with various power index law subjected to 80V electrical
loading: a) σxx b) σxy.

Fig. 11. Centerline deflection of FGPM plate subjected to 1KN/m2 and 80V load: a) CCSS b) CFFF c) SSFF.

Journal of Stress Analysis/ Vol. 4, No. 2, Autumn − Winter 2019-20 103



Fig. 12. Normal and transverse stresses of FGPM plate with various power index law subjected to uniform
mechanical loading 1kN/m2: a) σxx b) σxz.

4. Conclusions

In this paper, static analysis of FGPM plates are con-
ducted based on FSDT plate theory under mechanical,
electrical, and thermal loads using a meshfree method
based on the RPI method. Governing equations of the
FGPM plate are derived by using equilibrium equa-
tions. At first, by performing a comparison study, the
accuracy of the present meshfree RPI method is en-
sured. To reach good converge, 15× 15 node numbers,
and q = 1.03 are used. By using the “MQ” radial ba-
sis function and polynomial basis (m = 3),the effects
of different power indexes, boundary conditions, and
thermal, mechanical, and electrical loads on the bend-
ing of FGPM are investigated. The RPIM shape func-
tion passes the Kronecker delta condition, and thus
boundary conditions are applied directly. The stresses
are computed in each case study, and it has been shown
that stress distribution is nonlinear through the thick-
ness at nonzero index law values. It is seen that, by
increasing power law index, in the electro-mechanical
loading, the deflection decreases smoothly, but under
thermal and electrical loading, the deflection increases
at first, and then decrease by increasing power law in-
dex. The maximum deflection occurred at n = 0.6 and

n = 0.3 under thermal and electrical loading regard-
less of boundary conditions (CCSS, CFFF, and SSFF),
applying voltage and thermal loading. This property
can be used for the selection of optimum performance
of sensors and actuators in thermal environments. In
this paper, it is shown that RPIM is a proper proce-
dure for analyzing the bending behavior of the FGPM
plate under electro-thermal and mechanical loading. It
is because RPIM has good convergence rate, and it is
easy to implement.
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