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Abstract

In this study, a novel hybrid method was presented by considering the strengths
and weaknesses of the two methods of the direct sensitivity method (DSM)
and the complex variables method (CVM) and combining them to calculate
shape sensitivity. The most of methods available are highly dependent on the
values of step size variation related to the type of the problem. To validate
the proposed method, some examples were analyzed by using the written finite
element code. The comparison of results at solved problems indicated the
independency of the proposed method from step size and only need to select
an arbitrary small step size and the rounding error is negligible. It is a sign
of its high computational performance which converges to reliable, stable,
and high-precision results and saves calculation time compared to the other
methods. The other advantages of the proposed method are the low volume
of occupied memory and simplicity of implementation and its application in a
wide range of engineering problems having simple and complicated equations.

Nomenclature
T Absolute temperature Y Kinematic allowable temperature
T0 Reference temperature H1 First-order Sobolev space
θ0 Definite temperature φi Values vector of temperature
θ∞ Ambient temperatures M Shape functions
ni Unit vector BT Derivative matrix of shape functions
k Heat conduction coefficient Kth Total thermal stiffness matrix
h Convection heat transfer φ Temperature vector
q Thermal flux vector Q Thermal load
g Total number of elements Ne Inner thermal source
Γθ Boundary conditions ∆x Length of step siz
θ̄ Virtual temperature u Displacement
Ω Domain
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1. Introduction

In the analysis and design of complex engineering prob-
lems, it is necessary to use methods to estimate how
mechanical systems behave under the influence of de-
sired or undesired changes of different variables. In
other words, if a physical response is calculated from
the mathematical model, the response sensitivity will
be important compared to the other problem param-
eters. The technique to find the aforementioned sen-
sitivity is named the sensitivity analysis which is em-
ployed to calculate the changes in the problem response
to its parameters. The sensitivity information may be
utilized to determine or distinguish the effect of uncer-
tainties in the mathematical model and to predict the
answer variations relative to the changes of problem pa-
rameters. Moreover, the sensitivity analysis can be uti-
lized to optimally design a mechanical system with the
help of the first- and second-order optimization meth-
ods which need to calculate the derivative of objective
functions and constraints [1]. In addition to the opti-
mal design of problems, the sensitivity analysis has a
wide application in various fields including estimation
of parameters, model simplification, data equalization,
optimal control, uncertainty analysis, stochastic anal-
yses, engineering reverse problems, topology optimiza-
tion [2], shape optimization [3-4], and experimental de-
sign. It should be mentioned that this analysis extracts
valuable information in the aforementioned fields.

In a few last decades, many methods have been
presented concerning the sensitivity analysis in differ-
ent fields of science and engineering. Finite difference
method (FDM), analytical methods including direct
sensitivity method (DSM) and adjoint variable meth-
ods (AVM), complex variables method (CVM), and
semi-analytical method (SAM) are of the presented
methods in this field [5-6].

The analytical methods have a lot of advantages
than the numerical ones. The sensitivity calculated by
the analytical methods are precise and do not need to
use the step size, so, they are independent of it. How-
ever, in most cases, it is difficult to implement analyti-
cal methods in the finite element analysis code because
the calculation of stiffness matrix is not always analyt-
ically possible. These derivatives are analytically cal-
culated in the analytical method while it is difficult to
calculate them in most cases, especially for derivative
with respect to the geometry control parameters.

One of the most applicable numerical methods to
calculate derivatives of functions is the Taylor series
expansion around the desired point [7]. It is worthy
to note that calculations can be carried out in both
real and complex spaces using this method. For the
first time, the complex variables method was presented
by Lyness and Moler [8]. Lyness used it to determine
derivatives of some complicated functions [9]. Squire
and Trapp [10] also determined derivatives of real func-

tions by using CVM. Recently, various papers have
been presented to reintroduce the complex variable
method [11-15]. The advantage of CVM over the fi-
nite difference method is the slight effect of rounding
error on final results. So, it is not as sensitive as small
steps and is effective for general nonlinear functions.
Unfortunately, the CVM, like the FDM, is highly com-
putational and requires a complete solution for each
design variable. The semi-analytical method has been
proposed to balance accuracy, efficiency and easily im-
plemented and has the precision of analytical methods.
The purpose of sensitivity analysis by FEM is to cal-
culate the derivatives of the stiffness matrix, the mass
matrix, and the force vector relative to the design vari-
ables.

In the analytical method, these derivatives are cal-
culated analytically (mathematical relations). But in
many cases, especially for calculating the derivative
relative to the geometric variables, the calculation of
derivatives is difficult. In the semi-analytical method,
derivatives of stiffness matrix, force vector, and mass
matrix are calculated numerically such as finite differ-
ence method, but the final solution is done analytically.
In this way, it is possible to easily implement the finite
difference method and accurately arrive at acceptable
results. In this case, for the finite difference method,
the possibility of cutting and rounding errors is possi-
ble and care must be taken in choosing the step size
[16].

In recent years, the tendency to employ the sensi-
tivity analysis for large-scale systems whose governing
equations are the type of partial derivatives differential
ones has increased. One of these, the optimal design
of mechanical systems, has been at the center of inter-
est using the calculation of sensitivity by considering
temperature constraints [17-21].

Lots of research works have been published about
heat transfer sensitivity in mechanical systems thus far.
For instance, Haftka and Malkus [22] presented the
sensitivity analysis of conduction heat transfer based
on a discrete model including two linear and nonlin-
ear modes. Dems [18] also carried out developing the
sensitivity analysis of the size and shape of design pa-
rameters for the problem of nonlinear conduction heat
transfer in two states of steady and transient. Further-
more, Meric [23] presented a shape sensitivity analysis
for the problem of steady-state conduction heat trans-
fer. Tortorelli et al. [24] investigated the linear and
nonlinear sensitivity analysis of conduction heat trans-
fer based on a continuous model. Chen and Tong [25]
studied the sensitivity analysis in functionally graded
material (FGM) in steady and transient states. Using
semi-analytical method (SAM), Fernandez, and Tor-
torelli [26] performed the sensitivity analysis in steady,
transient, and dynamic mode problems. Besides, Fu-
ruta et al. [27] examined the sensitivity analysis of heat
transfer problems in nanoscale dimensions. Lee [28]
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scrutinized the sensitivity analysis in two-dimension
heat transfer problems in inhomogeneous objects via
the CVM as well. Established upon different envi-
ronmental criteria like heat transfer initiated from the
sunlight, Silva and Ghisi [29] predicted how the perfor-
mance of structures is using the sensitivity analysis.

Direct sensitivity method is a very accurate and
fast method, however, due to the difficulty of imple-
menting it analytically and its non-generality for all
issues, this method was generally combined with the
finite difference method. This would reduce the ac-
curacy and uncertainty of the semi-analytical method
because the results are generally dependent on the step
size. The complex variables method is an accurate nu-
merical method, and independent of the step size, but
being time-consuming is a disadvantage. In the current
study, by considering the strengths and weaknesses of
these two methods, a novel method to calculate the
sensitivity analysis in heat transfer problems was de-
veloped through simultaneous using DSM and CVM
as well as combining them. The results obtained by
the proposed method are independent of step size and
have high precision. In the next section, modeling and
obtaining the equations of finite element and analy-
sis of heat transfer equations, and then employing the
proposed method to analyze the sensitivity for a few
problems having heat transfer are presented. Finally,
the validation of the proposed method is investigated.

2. Primary Equations

To model and obtain the equations governing to heat
transfer problems, a homogeneous and isotropic three-
dimensional solid material is considered as shown in
Fig. 1. The steady thermal conduction equation and
boundary conditions are in the form of relations (1)
[30]:

− kθ,ii = g @ Ω

θ = θ0 @ Γ0
θ

kθ,in
i = q @ Γ1

θ

kθ,in
i + h(θ − θ∞) = 0 @ Γ2

θ

(1)

where θ = T − T0 that T is the absolute temperature,
T0 is the reference temperature in a material (body)
stress-free mode, and θ0 is the definite temperature of
material, θ∞ is the ambient temperature, ni is the i
component of unit vector perpendicular to the bound-
ary, k is the heat conduction coefficient of the material,
h is the convection heat transfer of the material, q is
the thermal flux vector, g is the inner thermal source,
and Γ0

θ, Γ1
θ, and Γ2

θ are the boundary with definite tem-
perature, thermal flux, and convection heat in that or-
der respectively. It should be mentioned that the su-
perscripts and subscripts indicate the component and

derivative concerning the field variables, respectively.
Furthermore, the Einstein summation convention was
utilized for duplicate index all through this paper.

Fig. 1. Heat transfer problem modeling for three-
dimensional solid material [16].

The weak form of the heat transfer problem will be
obtained if we multiply both sides of Eq. (1) by the vir-
tual temperature θ̄ and then integrate on the domain
Ω. ∫

Ω

kθ,iθ̄,idΩ+

∫
Γ2
θ

hθθ̄dΓ

=

∫
Ω

gθ̄dΩ+

∫
Γ1
θ

qθ̄dΓ +

∫
Γ2
θ

hθ∞θ̄dΓ

(2)

Eq. (2) for all θ̄ ∈ Y in which Y is the kinematic
allowable temperature space is in the form of Eq. (3).

Y =
{
θ ∈ [H1(Ω)] : θ = 0, x ∈ Γ0

θ

}
(3)

In Eq. (3), the parameter H1 is the first-order Sobolev
space. Eq. (4) presents the energy bilinear and load
linear forms for the temperatures.

A(θ, θ̄) ≡
∫
Ω

kθ,iθ̄,idΩ+

∫
Γ2
θ

hθθ̄dΓ

L(θ̄) ≡
∫
Ω

gθ̄dΩ+

∫
Γ1
θ

qθ̄dΓ +

∫
Γ2
θ

hθ∞θ̄dΓ

(4)

Therefore, Eq. (2) is simply rewritten as follows:

A(θ, θ̄) = L(θ̄) for all θ ∈ Y (5)

3. Finite Element Modeling

The equations governing the heat transfer problems
presented in the previous section are solved using FEM.
With the assumption of having continuous values of θ,
they can be calculated into an element by interpolation
of node values in the form of Eq. (6):

θ = Miφi (6)

where φi is the values vector of temperature at element
nodes and M is a matrix consisting of corresponding
shape functions of each node. Temperature gradients
can be calculated in the form of Eqs. (7) where BT
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is the derivative matrix of shape functions concerning
position variables and is defined as Eq. (8).

∇θ =


∂θ

∂x

∂θ

∂y

 = BTφ (7)

BT =


∂M

∂x

∂M

∂y

 (8)

By substituting Eqs. (6) to (8) in Eq. (2) and sim-
plifying them, stiffness matrix, and force vector can be
calculated in FEM.

φ̄TKthφ = φ̄TQ (9)

where

Kth =

∫
Ω

kBT
TBT dΩ+

∫
ΓT
θ

hMTMdΓ

Q =

∫
Ω

gMT dΩ+

∫
Γ1
θ

qMT dΓ +

∫
Γ2
θ

hθ∞MT dΓ

(10)

Since Eq. (9) should be established for all φ̄, Eq. (11)
can be concluded as:

Kthφ = Q (11)

where Kth is the total thermal stiffness matrix which
is acquired from superposing the stiffness matrixes of
elements and temperature vector coefficients of � ini-
tiated from convection boundary condition, and Q is
the thermal load resulted from heat transfer processes
including thermal flux.

To calculate the variables Kth and Q, Eqs. (12)
and (13) should be used on all available elements in
the domain investigated in the material.

Kth =

Ne∑
e=1

(∫
Ωe

kBT
TBT dΩ+

∫
Γ2e
θ

hMTMdΓ

)
(12)

Q =
Ne∑
e=1

(∫
Ωe

gMTΩ+

∫
Γ1e
θ

qMTMdΓ

+

∫
Γ2e
θ

hθ∞MTMdΓ

)
(13)

In the above relations, Ne is the total number of ele-
ments, and integrals are taken on the elements or their
boundaries. After assembling and obtaining the stiff-
ness matrix as well as the total force vector of material,
temperature values are acquired in the whole material
by applying boundary conditions and then solving Eq.
(5).

4. Shape Design Sensitivity Analysis

As mentioned earlier, the finite element equation is ob-
tained through Eq. (11) for the steady-state thermal
conduction problem. In this paper, it is assumed that
the parameters k, h, g, and q are independent of tem-
perature.

DSM is based on the implicit derivation of balance
(equilibrium) equations. Thus, the derivative of Eq.
(11) is taken concerning the design parameters hp and
p = 1, , P in the analysis of sensitivity for temperature.
The following term is obtained for the sensitivities ∂φ

∂hp

by ordering the taken derivative.

Kth ∂φ

∂hp
= −∂Kth

∂hp
φ+

∂Q

∂hp
(14)

The recent equation is similar to Eq. (11) and just
the right side of the aforementioned equation named
as heat quasi-load vector should be calculated. When
the right-side values of the new terms are determined,
∂φ

∂hp
can also be calculated by solving the system of

Eq. (14).

The terms ∂φ

∂hp
and ∂Kth

∂hp
can be precisely obtained

in the analytical method while it is difficult and in-
tolerable to exactly determine them. Moreover, how
to acquire the aforementioned terms may vary from a
problem to another. In the traditional semi analytical
method (TSAM), these terms are calculated by FDM
and the sensitivities are then obtained using solving
the system of Eq. (14). Simplicity is one of the ad-
vantages of SAM, but its weakness is being sensitive to
the change of step size and the results are under the in-
fluence of rounding and cutting errors. This weakness
is more apparent especially when the number of terms
is high and the presence of error in their calculation
leads to creating a bigger total error. However, in the
current research, the complex variable was utilized to
numerically calculate the mentioned terms. This leads
to eliminating the dependency of results on the step
size. The other advantage of the proposed method
is lower occupied memory because complex numbers
are not used in the whole implemented computer code,
so, the code runtime and calculation volumes become
lower. Besides, this method results in converging to
precise and secure results in lower time.

In this paper, the finite element method was used
to analyze the heat transfer problems and sensitivity
analysis was implemented in the finite element code. In
general, sensitivity analysis by the analytical method
is performed with two ways:
First, to derive from the heat transfer equation and
then solve it numerically (for example, the finite ele-
ment method).
Second, the problem is first formulated numerically (for
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example, by the finite element method), and then de-
rive from the discretized equation. In this paper, the
second way is used, which was the same as the DSM.

5. Complex Variable Derivative Method

As mentioned earlier, CVM is based on the Taylor se-
ries expansion so that it takes a complex step on the
imaginary axes. To extract FDM approximation to cal-
culate derivatives, it can be developed Taylor series at
point x using Newton forward, and backward steps and
the below formulation is then obtained by subtracting
them.

df

dx
≈ f(x+∆x)− f(x−∆x)

2∆x
(15)

Relation (15) has a second-order error to calculate the
derivative in which ∆x is the length of change step.
The weaknesses of this method are its high calculation
time and the inaccurate possibility of derivative val-
ues of functions. The first one initiates from requiring
Eq. (15) to two solutions having good convergence for
calculation of functions. The second one is because of
being sensitive derivatives to step size. To minimize
the rounding error of numbers, the step size should be
selected small [7]. It should be mentioned that too
small step size may result in producing an error that
eliminates meaningful numbers. In order to create a
balance, the optimal value for step size is not previ-
ously determined and may be varied from a function
and/or a design variable to another.

If the function Taylor series is expanded using a
complex step, Eq. (16) will be obtained [7].

f(x+ i∆x) = f(x) + i∆x
df

dx
− ∆x2

2

d2f

dx2

− i∆x3

6

d3f

dx3
+

∆x4

24

d4f

dx4
− · · ·

(16)

By separating two real and imaginary parts of Eq. (16)
and solving the imaginary one, derivative relation is ac-
cessible as Eq. (17).

df

dx
≈ Im[f(x+ i∆x)]

∆x
(17)

Similar to relation (15), relation (17) has a second-
order error for calculation of derivative O(2). There-
fore, the function and its derivative are acquired with-
out subtraction error by calculating the function with
a complex argument. Hence, it can be expressed that
the real part is the value of the function.

Since the problem is linear here, the variables of
stiffness matrix Kth and force vector Q are not as a
function of temperature. As a result, Eqs. (18) and
(19) can be employed to calculate the terms of ∂Q

∂hp

and ∂Kth

∂hp
.

∂Kth

∂hp
=

Im[Kth(hp + i∆hp)]

∆hp
(18)

∂Q

∂hp
=

Im[Q(hp + i∆hp)]

∆hp
(19)

After calculation of the above terms, the values of
sensitivity analysis of the desired parameters with re-
spect to the problem variables, i.e. ∂Q

∂hp
, are calculated

through Eq. (20).

∂φ

∂hp
= (Kth)−1

(
−∂Kth

∂hp
φ+

∂Q

∂hp

)
(20)

When the parameters get sensitive to displacement and
temperatures, the sensitivity of the desired functions
will be calculable based on the following discussion.

If the response R is a function of design parameters
hp and p = 1, · · · , P , also, dependent on the displace-
ment (u) and temperature (φ) fields, it will be as Eq.
(21). The derivative of response R concerning the de-
sign parameter hp is defined as Eq. (22).

R = R(φ(hp), hp) (21)

dR

dhp
=

∂R

∂hp
+

∂R

∂φ

∂φ

∂hp
(22)

dR

dhp
is also obtained using Eq. (23):

dR

dhp
=

Im[ϕ(φ+ i∆φ, hp + i∆hp)]

∆hp
(23)

In which:

∆φ =
∂φ

∂hp
∆hp (24)

In this research work, to analyze the problems, a 2D fi-
nite element code with the aforementioned formulation
and assumptions was written in MATLAB. This code
utilizes linear shape functions for the four-node square
element. The equations of shape functions of these
elements can be extracted from most reference books
of finite element [31]. The geometry of and meshing
problems are made in ABAQUS and then MATLAB
was applied to analyze them. To solve the system of
equations, the MATLAB’s solver was employed. In
fact, in this paper, problem analysis was done by us-
ing of written code and ABAQUS software was used
to produce geometry. A small step should be created
in an appropriate node coordinates to change in desire
geometry variables; of course, it should be in the form
of imaginary. To this end, the first node located in
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the desired parameter is chosen. The partial distur-
bance for X and Y coordinates is dependent on the
sensitivity which should be calculated. All of the other
nodes remain unchanged. If the goal of the problem is
to determine the sensitivity analysis concerning mate-
rial characteristics like Young modulus, a change step
should be considered for the studied characteristic.

6. Numerical Examples

In this section, some problems are utilized to validate
the proposed method for analyzing the sensitivity with
the help of FEM. The results obtained for the sensi-
tivity analysis are compared to the current research,
TSAM, and FDM. The same code of problem without
the sensitivity part is used for FDM as well.

6.1. Sensitivity Analysis in a Thin Rectangular
Plate

Consider a 10m side rectangular plate as shown in Fig.
2. The three sides of this plate were kept at T = 100◦C.
Sinusoidal temperature distribution was applied to the
upper boundary of the plate. Hence, the boundary
conditions governing the plate are in the form of Eqs.
(25) and (26).

T (x, 0) = T1

T (0, y) = T1 (25)

T (W,y) = T1

T (x,H) = Tm sin
(πx
W

)
+ T1 (26)

In Eq. (26), the parameter Tm is the domain of the si-
nusoidal function and equal to 100◦C. In this problem,
solving the equations having partial derivatives using
separating the variables results in solving the Laplace
equation. The temperature distribution in the whole
plate will be in the form of Eq. (27) [32].

T = Tm

sinh
(πy
W

)
sinh

(
πH

W

) sin
(πx
W

)
+ T1 (27)

By deriving Eq. (27) concerning one of the sides of
the square (H), the sensitivity dT

dH
is calculable as Eq.

(28). It should be paid attention that given the asym-
metry available in the boundary condition of the plate,
the sensitivity values of temperature will be different
compared to the other side of the square (W ).

dT

dH
= −πTm

W
sinh

(πy
W

)
sin
(πx
W

) cosh

(
πH

W

)
(
sinh

(
πH

W

))2

(28)

Fig. 2. The geometry shape of a thin rectangular plate
under heat transfer and boundary conditions governing
it.

To numerically analyze the problem by FEM, each
side is divided into 20 equal parts so that the whole
plate consists of 400 four-node square elements.

The temperature sensitivity is presented in terms
of plate length (H) in Table 1 using SAM and FDM at
the center of a point with the coordination of x =

W

2

and y =
H

2
. Fig. 3 shows a comparison between the

values of temperature sensitivity analysis with respect
to the plate length based on the logarithm values of
step size. As can be seen, FDM has no reliable con-
vergence in all step sizes. The correct performance is
observable only at a limited interval from the step size
of 10−4−10−9. The divergence of problem is apparent
and the accuracy of sensitivity analysis is eliminated,
especially at the length of the steps much smaller than
10−12. For instance, the relative error value during cal-
culating the sensitivity analysis is equal to 126% at the
step length of 10−15. It is worthy to mention that em-
ploying FDM is not possible at the length of the steps
smaller than 10−15. Despite FDM, the method pro-
posed in the current research has a reliable convergence
as well as an acceptable accuracy in the calculation of
sensitivity analysis even the length of the small steps.
The difference amount between the results obtained at
the step length values of 10−1 and 10−15 for the pro-
posed method is equal to 0℃ while this difference at
FDM is 7.93℃ which is almost more than 100% error.

It can be concluded again that FDM is sensitive
to step size while the proposed semi-analytical method
eliminates its dependency on step size by employing a
complex variable. Moreover, for all step sizes in this
method, the relative error value of the sensitivity anal-
ysis compared to the real one is very negligible and
equal to 0.07%. Furthermore, the code runtime and
calculations volume of the proposed method are also
lower than that of FDM.
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Fig. 3. The comparison between the values of temperature sensitivity analysis with respect to plate length.

Table 1
Temperature sensitivity analysis on a rectangular plate relative

to the length of one side
(

dT

dH

)
.

log(h) FDM Proposed method
(m) (◦C/m) (◦C/m)
-1 -6.280701577318 -6.27950984450222
-2 -6.279521762882 -6.27950984450222
-3 -6.279509963711 -6.27950984450222
-4 -6.279509844092 -6.27950984450222
-5 -6.279509834428 -6.27950984450222
-6 -6.279509790375 -6.27950984450222
-7 -6.279508966145 -6.27950984450222
-8 -6.279525877062 -6.27950984450222
-9 -6.279570641254 -6.27950984450222
-10 -6.279918807195 -6.27950984450222
-11 -6.285461040534 -6.27950984450222
-12 -6.245670647331 -6.27950984450222
-13 -6.679101716145 -6.27950984450222
-14 -5.684341886081 -6.27950984450222
-15 -14.210854715202 -6.27950984450222
-16 0.000000000000 -6.27950984450222
-17 0.000000000000 -6.27950984450222
-18 0.000000000000 -6.27950984450222
-19 0.000000000000 -6.27950984450222
-20 0.000000000000 -6.27950984450222
Elapsed time (s) 11.513062 7.965710

Exact sensitivity 6.28371254

6.2. Calculation of Shape Sensitivity in a Long
Cylindrical Tube

In this section, a cylindrical tube with ri = 0.4m (inner
radius) and ro = 1m (outer radius) was considered as
shown in Fig. 4. There was no heat generation source
into the tube and its heat conduction coefficient was
equal to 0.2W/mK. The boundary conditions govern-
ing this problem on the inner and outer surfaces of the
tube are in the form of Eq. (29).

r = ri =⇒ T = 500K

r = ro =⇒ q = −20J/m
(29)

In this problem, the goal is to calculate the deriva-
tive of the tube temperature concerning the outer ra-
dius

(
dT (r)

dr0

)
. To validate the result of the written

code, the solution of the heat transfer problem is illus-
trated using the written code and ABAQUS analysis

in Figs. (5) and (6), respectively. The similarity of the
temperature distribution results in the tube is clear by
comparing two aforesaid figures.

Fig. 4. The geometry shape of a long cylindrical tube
under heat transfer.

Fig. 5. Temperature distribution in the long cylindri-
cal tube by the proposed code.
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Fig. 6. Temperature distribution in the long cylindri-
cal tube by ABAQUS.

Table 2 indicates a comparison between the results
of the sensitivity analysis obtained from the proposed
method, SAM, FDM, and TSAM.

The results of sensitivity analysis for the three
aforementioned methods are plotted in Fig. 7. As
can be seen, the results of FDM and TSAM have an
error at the step size smaller than 10−13, but there is
a stable convergence in the proposed method at the
step size smaller than 10−3. It is clear that FDM and
TSAM are sensitive to step size but there is no sensitiv-
ity to it for the combination of SAM with CVM. The
relative difference amount between the value of sensi-
tivity analysis of Table 2 at two step sizes of 10−3 and
10−16 are equal to 2.8%, 19440%, and 2725% for the
proposed method, FDM, and TSAM, respectively. In
addition, the calculation time of the proposed method
is also lower than that of FDM and TSAM.

Fig. 7. The comparison between the values of temperature sensitivity analysis the long cylindrical tube.

Table 2
Temperature sensitivity analysis on the long cylindrical tube relative to outer radius

(
dT

dr0

)
.

log(h) (m) FDM (◦C/m) TSAM (◦C/m) Proposed method (◦C/m)
-2 -52.3629756002094 -55.3766747803753 -49.6581215308640
-3 -52.3617390971083 -52.3902501429957 -52.3332341022271
-4 -52.3617267373311 -52.3620116810284 -52.3614415229236
-5 -52.3617266622978 -52.3617294525968 -52.3617237506746
-6 -52.3617273131549 -52.3617265904056 -52.3617265729905
-7 -52.3617234193807 -52.3617206030492 -52.3617266012352
-8 -52.3616762393431 -52.3617244238044 -52.3617266014823
-9 -52.3621679349162 -52.3615095477798 -52.3617266014774
-10 -52.3601784152561 -52.3611955601236 -52.3617266014771
-11 -52.3186827194876 -52.3726111210512 -52.3617266014668
-12 -53.1485966348555 -52.2944735451879 -52.3617266014927
-13 -55.7065504835919 -54.2073993718553 -52.3617266014828
-14 -119.3711796076970 -29.9294349775606 -52.3617266014960
-15 -255.7953848736360 -38.3982092519222 -52.3617266014813
-16 -10231.8153949454000 -1480.3636062773500 -52.3617266014945
-17 0.0000000000000 0.0000000000000 -52.3617266014871
-18 0.0000000000000 0.0000000000000 -52.3617266014999
-19 0.0000000000000 0.0000000000000 -52.3617266014829
-20 0.0000000000000 0.0000000000000 -52.3617266014731
Elapsed time (s) 4.16 2.79 2.40
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7. Conclusions

By combining DSM and CVM, the current study
presents a novel method to calculate the geometry sen-
sitivities in heat transfer problems. DSM has good
efficiency and saves calculation time compared to the
other methods. This is because of calculating the sen-
sitivities only in the required situations of material.
However, the common methods utilize an exact ap-
proach to derive stiffness and mass matrixes, so, the
derivation for each type of finite element can be te-
dious. To improve the efficiency of DSM, exact deriva-
tion can be replaced with the FDM numerical method.
It should be noted that the common sensitivity calcu-
lation methods are highly dependent on the values of
step size. Therefore, using the advantages of both DSM
and CVM, which are not influenced by the step size, a
novel computational method to calculate the sensitivi-
ties of heat transfer problems can be recommended. In
this research, the superiority of the proposed method
compared to the common computational methods was
indicated by investigating some examples. In the cur-
rent method, only if a small step size is selected, the
rounding error is negligible, so that it provides a re-
liable, exact, and stable answer for the sensitivity in
problems. Meanwhile, the calculation time is consid-
erably low as well. The low volume of the occupied
memory and simplicity of implementation in the form
of the computer code is of the other advantages of this
method. In the end, the error of the calculated sen-
sitivities in the common computational methods can
considerably decrease by the application of complex
variables. The numerical calculation of sensitivity in
the outline of DSM can be improved using the com-
plex variables. In comparison with the common ap-
proaches, the proposed method has high precision and
ensures good efficiency in the total range of step size.
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