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Abstract

In this work, the spectral collocation method based on Chebyshev polynomials
is developed and utilized for analysis of static, free vibration, and dynamic
behavior of one and two-dimensional solid structures. The main objective
of the work is to introduce the spectral collocation method with Chebyshev
polynomials as a powerful numerical method for solid mechanic analysis. To
show the advantage and effortlessness of this method, one and two-dimensional
solid structures as case studies were considered and the spectral collocation
method was directly applied to the analysis and the governing equation was
solved. Moreover, the homogeneous material properties and functionally graded
material properties were analyzed to show the capability of the introduced
method for solving the more complicated equations of motion. The results
obtained for each case were compared with analytical and numerical results
presented in the literature and some results were also compared with ANSYS.
The results showed that the presented method has very good accuracy and
efficiency to solve structural-mechanical properties.

Nomenclature
Tn(x) Chebyshev polynomials of the first kind Fx Body forces in x direction
ai Unknown Chebyshev coefficients Fy Body forces in y direction
θ(x, y) Temperature ux Displacement fields in x direction
Lx Length of plate in x direction uy Displacement fields in y direction
Ly Length of plate y direction λ, µ Lame´’s constants
ER Young’s modulus in the right direction of

nanobeam
EL Young’s modulus in the left direction of

nanobeam
ρ Mass density

1. Introduction

Due to the complexity of differential equations govern-
ing the solid mechanic problems (Navier equations), in

most cases there is no way to find analytical solutions
for these kinds of differential equations. The numerical
solution is an alternative way to get the desired results
in such situations. So some numerical methods are
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widely developed and used in this branch of engineering
analysis. The most developed numerical methods are
the Finite Element Method (FEM), Finite Difference
Method (FDM), Mesh free Method, and some other
methods that are not used extensively in comparison
with the three mentioned methods.

From a general point of view, the numerical meth-
ods in a solid mechanic are categorized into two classes,
weak and strong forms. Methods that applied to the
weakened form of differential equations named weak
forms and methods that directly imposed on the dif-
ferential equations of problems belong to the strong
form methods. In the strong form, it is necessary that
the approximation of field variables has a strong de-
gree of consistency in the problem domain whereas in
the weak form a weaker consistency is needed. For ex-
ample, for solving second order differential equations
with a strong form method, the approximation func-
tion must be derivative at least twice, but in the weak
form method, only one derivability of approximation
function is enough. The weak form methods are more
accurate and stable, and because of this reason they are
developed more than strong form methods, but weak
forms have complicated algorithms and heavy calcu-
lations, in contrast, strong form methods have simple
algorithm and calculations but they are in most situ-
ations unstable and inaccurate, especially in problems
with derived type boundary conditions. One of the
most famous numerical strong form methods is the col-
location method. In this method first, an approxima-
tion or interpolation method is made to approximate
the field variables in the problem domain and then the
system of an algebraic equation is generated by satisfy-
ing the governing differential equation at some points
named collocation points. Chebyshev polynomials are
most used as trial functions in spectral methods. The
spectral method is a method for representing the dy-
namic solution in the form of a series of solutions at
different frequencies, this method is mostly used in
the fluid dynamic analysis [1-3]. One of the impor-
tant advantages of spectral methods is their high ac-
curacy in analysis with numbers of node discretization
that are remarkably less than other numerical meth-
ods, but they have a serious disadvantage that may be
the reason that why they are not developed and used
extensively in many branches of engineering such as a
solid mechanics. In two and three dimensions, spec-
tral methods applicable to domains that their bound-
aries are parallel to coordinate axis (such as rectangle
and cub) and more generally to domains that can be
mapped to a rectangle or cube. Although some applica-
tions are presented that use them in some sub-domains
such as spectral element method and even the same
manner is used for fluid dynamic analysis in nonrect-

angular domains or mono-domain and multi-domain
solutions of fluid equations, but these applications do
not have the simplicity of direct spectral methods [4,5].
Some studies deal with collocation methods are as fol-
lows: Zhang et al. [6] proposed a finite point method,
least-squares collocation meshless method, for solving
Poisson equation and also some static structural anal-
ysis. They concluded that the proposed collocation
method was performed better than the direct colloca-
tion method whereas the total number of unknowns in
their method equals those in direct collocation method.
In another work, Liu et al. [7] used the radial point
interpolation collocation method (RPICM) based on
Hermite-type interpolation for the solution of 2-D solid
mechanic analysis. Lee and Yoon [8] used a Gener-
alized Diffuse Derivative Approximation (GDDA) in
combination with a point collocation method for anal-
ysis of elasticity and crack problems.

Free vibration analysis of Timoshenko beams by
Discrete Singular Convolution (DSC) method was per-
formed by Civalek and Kiracioglu [9]. Clamped,
pinned, and sliding boundary conditions and their com-
binations were taken into account in their work and
they concluded that DSC method is very effective for
the study of vibration problems of Timoshenko beam.

Large deflection static analysis of rectangular plates
on two-parameter elastic foundations was investigated
by Civalek and Yavas [10]. They studied geometri-
cally nonlinear static analysis of thin rectangular plates
on Winkler-Pasternak elastic foundation and the non-
linear partial differential equations obtained from Von
Karman’s large deflection plate theory. Finally, they
solved the obtained nonlinear partial differential equa-
tions by using the DSC method. Vibration analysis
of Functionally Graded (FG) cylindrical shells with
power-law index using discrete singular convolution
technique was investigated by Mercan et al. [11].The
constitutive relations were based on the Love’s first
approximation shell theory and the material proper-
ties of cylindrical shell were considered to be graded in
the thickness direction according to a volume fraction
power law indexes.

Static analysis of functionally graded piezoelectric
plates under electro-thermo-mechanical loading using
meshfree method based on radial point interpolation
method (RPIM) was investigated by Nourmohammadi
and Behjat [12]. The First-order Shear Deformation
Plate Theory (FSDT) was used to model the behavior
of the plate and also power law distribution through
the thickness was considered for all of mechanical, ther-
mal, and piezoelectric properties in their work. Sheikhi
Azqandi et al. [13] presented a novel hybrid method
by considering the strengths and weaknesses of the two
methods of the Direct Sensitivity Method (DSM) and
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the complex variables method (CVM) and combining
them to calculate shape sensitivity in solid mechanics.

Furthermore, some studies have been conducted
around the spectral methods and Chebyshev polyno-
mials that some of them are as follows: Zhou et al.
[14] employed Chebyshev polynomials multiplied by
a boundary function as admissible functions in Ritz
method for free vibration analysis of rectangular plates
with various thicknesses. They concluded that the pro-
posed technique yields very accurate natural frequen-
cies and mode shapes of rectangular plates with arbi-
trary boundary conditions. Celik [15] presented a so-
lution for magneto hydrodynamic flow in a rectangular
duct by the Chebyshev collocation method. Cheby-
shev polynomials were used for approximation of field
variables and then the collocation was applied to equa-
tions at a reasonable number of collocation points.
Carcione [16] used a 2D Chebyshev differential oper-
ator for solving the elastic wave equation with non-
periodic boundary conditions. Moreover, he success-
fully used the technique to domain decomposition and
applied proper boundary conditions on domain inter-
faces. Ehrenstein and Peyret [17] carried out a solution
of Navier-Stokes equations with double-diffusive con-
vection with the Chebyshev collocation method, they
concluded that the collocation method possesses some
advantages over the Tau method such as better ac-
curacy and stability, easier solution of variable coeffi-
cients equations. Wu et al. [18] studied the applica-
tion of Chebyshev spectral method for the numerical
solution of time-dependent variably saturated Darcian
flow problems. They showed that Chebyshev spectral
method has higher computational efficiency than the
traditional finite difference method in their problem
because finite difference method requires a high mesh
density to improve accuracy.

Huang et al. [19] used Chebyshev spectral method
as a new approach for vibration analysis of in-plane
functionally graded plates with variable thickness.
Both the material properties and the thickness which
vary in the plane of the plate were approximated
by high-order Chebyshev expansions. They showed
that the results obtained from the Chebyshev spectral
method have a good convergence and agree with those
in literature.

Free axisymmetric vibrations of composite circular
sandwich plates with isotropic core and orthotropic fac-
ings were studied using first-order shear deformation
theory by Rani and Lal [20]. They used the Hamilton’s
principle to derive the governing differential equations
and finally they applied Chebyshev collocation tech-
nique to obtain the frequency equations for the plate
with clamped or simply supported or free edge condi-
tions.

Free axisymmetric vibrations of composite annu-
lar sandwich plates with thick isotropic core and or-
thotropic facings by using Reddy’s higher-order shear
deformation theory were studied by Guru and Jain
[21]. They used Chebyshev collocation technique to
determine the frequency equations and then solved
them using hybrid bisection-secant method to obtain
the frequency values for first three modes of clamped-
clamped, clamped-simply supported, and clamped-free
plates. Alihemmati et al. [22, 23] developed Cheby-
shev collocation method for generalized thermoelas-
ticity problems of one and two-dimensioanl finite do-
mains. They solved the highly coupled thermoelastic-
ity equations based on Lord-Shulman, Green-Lindsay
and Green-Naghdi theories by Chebyshev collocation
method and concluded that the used Chebyshev col-
location method besides its simplicity has very good
convergence and accuracy in generalized thermoelas-
ticity problems.

Chih-Hsun and Ming-Hw [24] solved the governing
differential equations of a laminated anisotropic plate
by utilizing the Chebyshev collocation method. The
solution of the problem was assumed to be a set of
Chebyshev polynomials with some unknown constants
and several examples were given to highlight the effec-
tiveness of this method.

Gumgum et al. [25] investigated two-dimensional
heat equation by using Chebyshev collocation method.
The method converts the two-dimensional heat equa-
tion to a matrix equation, which corresponds to a sys-
tem of linear algebraic equations.

In the literature, there are many different solution
methods for the governing equations in macro and mi-
cro/nano dimensions [26-34]. In recent years, several
articles were presented to show the capabilities of dif-
ferent methods [35, 36]. But the point to be noted
is that each of these methods is applicable to certain
problems and there are fewer comprehensive solution
methods that are suitable for all engineering problems.
Anyway, Chebyshev collocation method is a straight-
forward and easily implemented method and beside its
simplicity shows very good accuracy and stability in
other works performed in the literature. It can be suit-
able to apply this method to various kinds of solid me-
chanics analysis as well as various geometries to prove
the capability of the Chebyshev collocation method to
use successfully in structural mechanics. So the present
work is an attempt to develop an application for the
Chebyshev collocation method to solve governing equa-
tions for static, free vibration, and dynamic analysis
of some solid structures. Additionally, some compli-
cated cases as functionally graded material properties
and nano-structural analysis with non-classical elastic-
ity theories are considered. Here, we have tried to an-
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alyze the problems that have more applications in me-
chanical engineering and also tried to solve some case
studies in macro-micro dimensions to show the capa-
bility of this method more than before. The results are
compared with other results found in other literature
and also with ANSYS.

2. Methodology

2.1. Chebyshev Polynomials

The Chebyshev polynomials of the first kind are the
polynomials of n-degree defined as follows [1]:

Tn(x) = cos(n cos−1 x)

−1 ≤ x ≤ 1, n = 0, 1, 2, · · ·
(1)

so:
T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

(2)

One of the most important advantages of the Cheby-
shev polynomial that makes it much flexible to use in
numerical simulation of physical phenomena is that
these polynomials can be achieved by the recurrence
as:

Tn(x) = 2xTn−1(x)− Tn−2(x) (3)

It means that by having the first and second Chebyshev
polynomial, T0, and T1, other polynomials can easily
derived by Eq. (3).

The integral and derivative of any order of these
polynomials can also be derived in terms of the Cheby-
shev polynomials as follows:

T ′
n+1(x)

(n+ 1)
−

T ′
n−1(x)

n− 1
= 2Tn(x) n ≥ 2 (4)

and∫
Tn(x)dx =

1

2

[
Tn+1(x)

(n+ 1)
− Tn−1(x)

n− 1

]
+ C n ≥ 2 (5)

Eqs. (4) and (5) show that the derivates and inte-
grals of any order of Chebyshev polynomials can be
derived easily in terms of the polynomials themselves,
that these rules beside the recurrence rule of Eq. (3)
are very useful in numerical and algorithmic solutions.

2.2. Interpolation with Chebyshev Polynomials

A function y(x) in the interval of [−1, 1] can be inter-
polated by Chebyshev polynomial as:

y(x) = a0T0 + a1T1 + a2T2 + · · ·+ anTn

=
n∑

i=1

aiTi(x)
(6)

in which ai are the coefficient of nth degree of Cheby-
shev polynomial that approximate y(x) in the interval
[−1, 1] and pass through n+ 1 nodes (xi, yi).

Since y(x) passes through n+1 nodes (xi, yi), a set
of n+ 1 equations are generated as follows:

y(x0) = y0 ⇒

a0T0(x0) + a1T1(x0) + a2T2(x0) + · · ·+ anTn(x0) = y0

y(x1) = y1 ⇒

a0T0(x1) + a1T1(x1) + a2T2(x1) + · · ·+ anTn(x1) = y1

... (7)

y(xn) = yn ⇒

a0T0(xn) + a1T1(xn) + a2T2(xn) + · · ·+ anTn(xn) = yn

and in matrix form:
T0(x0) T1(x0) · · · Tn(x0)
T0(x1) T1(x1) · · · Tn(x1)

...
...

...
...

T0(xn) T1(xn) · · · Tn(xn)




a0
a1
...
an

 =


y0
y1
...
yn


(8)

And finally the coefficients (ai) can be derived by solv-
ing this system of algebraic equations.

It should be noted that for a polynomial of nth

degree, using of first n of Chebyshev polynomials is
sufficient for interpolation and this interpolation gives
exact solution.

2.3. Spectral Collocation with Chebyshev Poly-
nomials

Now the idea presented in section 3.1 is employed to
interpolate the field variable in differential equations.
Consider a differential equation as follows:

A(x)
d2u

dx2
+B(x)

du

dx
+ C(x) = F (x) − 1 ≤ x ≤ 1

u(−1) = u1
du

dx

∣∣∣∣
x=1

= k (9)

where A(x), B(x), C(x), and F (x) are arbitrary func-
tions of x, and u1 and k are scalars. For the case of
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the domain intervals aside from [−1, 1], without any
change in the generality of the method, the problem
domain can be mapped into [−1, 1] by a simple map-
ping.

For applying the Chebyshev collocation spectral
method to this differential equation first the field vari-
able u is interpolated by Chebyshev polynomials as:

u =
n∑

i=0

aiTi (10)

ai are unknown Chebyshev coefficients that need to
be evaluated and Ti are Chebyshev polynomials that
approximate u in the whole domain of problem with
nth degree polynomial. This is the basic difference be-
tween the spectral method and other numerical meth-
ods such as finite element and finite difference meth-
ods that interpolate/approximate the variables in some
subdomains. After interpolation, the collocation is ap-
plied to Eq. (9) at Chebyshev nodes as:

A(xj)

n∑
i=0

ai
d2Ti

dx2

∣∣∣∣
x=xj

+B(xj)
n∑

i=0

ai
dTi

dx

∣∣∣∣
x=xj

= F (xj)

j = 2, 3, · · · , n (11)
n∑

i=0

aiTi

∣∣∣∣
x=−1

= u1

n∑
i=0

ai
dTi

dx

∣∣∣∣
x=1

= k

xj are collocation points, as for this work where the
Chebyshev nodes are used as collocation points. The

numbers of collocation points are restricted by a max-
imum number of Chebyshev polynomials and also the
types of boundary conditions, for example in Eq. (11)
at each boundary nods we have one equation for bound-
ary condition, it means that n + 1 collocation points
should be considered, in some situations such as beam
equations at boundary points we may have more than
one equation that decreases the total numbers of col-
location points. By applying Eq. (11) in collocation
points a system of n + 1 set of the equation is gener-
ated as Eq. (12).

By solving the above system of equations, the un-
known coefficient will be determined and so u can be
calculated at any arbitrary point that is the goal of this
problem with Eq. (10). In the following part, some ex-
amples of the performance of the introduced method
are presented.

3. Results and Discussion

In this section, two-dimensioanl steady-state heat con-
duction is considered the first case study and after
analyzing this case, this method was applied for an-
alyzing the other complex problems in solid mechan-
ics. The application of this introduced method in solid
mechanics is the main goal of the present work. In
special cases, the method is applied to static, dynamic,
and free vibration analysis of one- and two-dimensional
macro/microstructures. Furthermore, to show the flex-
ibility of the present method in a more complicated
problem the same analysis of Functionally Graded Ma-
terial (FGM) cases was performed.



T0(−1) T1(−1) · · · Tn(−1)

A(x2)
d2T0

dx2

∣∣∣∣
x=x2

+ A(x2)
d2T1

dx2

∣∣∣∣
x=x2

+ · · · A(x2)
d2Tn

dx2

∣∣∣∣
x=x2

+

B(x2)
dT0

dx

∣∣∣∣
x=x2

+ B(x2)
dT1

dx

∣∣∣∣
x=x2

+ · · · B(x2)
dTn

dx

∣∣∣∣
x=x2

+

A(x3)
d2T0

dx2

∣∣∣∣
x=x3

+ A(x3)
d2T1

dx2

∣∣∣∣
x=x3

+ · · · A(x3)
d2Tn

dx2

∣∣∣∣
x=x3

+

B(x3)
dT0

dx

∣∣∣∣
x=x3

+ B(x3)
dT1

dx

∣∣∣∣
x=x3

+ · · · B(x3)
dTn

dx

∣∣∣∣
x=x3

+

...
... · · ·

...

A(xn−1)
d2T0

dx2

∣∣∣∣
x=xn−1

+ A(xn−1)
d2T1

dx2

∣∣∣∣
x=xn−1

+ · · · A(xn−1)
d2Tn

dx2

∣∣∣∣
x=xn−1

+

B(xn−1)
dT0

dx

∣∣∣∣
x=xn−1

+ B(xn−1)
dT1

dx

∣∣∣∣
x=xn−1

+ · · · B(xn−1)
dTn

dx

∣∣∣∣
x=xn−1

+

dT0

dx

∣∣∣∣
x=1

+
dT1

dx

∣∣∣∣
x=1

+ · · · dTn

dx

∣∣∣∣
x=1

+


︸ ︷︷ ︸

K



a1
a2
a3
...

an−1

an


︸ ︷︷ ︸

a

=



u1

F (x2)
F (x3)

...
F (xn−1)

k


︸ ︷︷ ︸

F

(12)
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3.1. Case study 1: Heat Conduction Equation

At first, to show the ability of the method in other field
equations, a two-dimensional steady-state heat conduc-
tion problem for a homogenous rectangular plate was
considered and solved by this method. The heat con-
duction equation and boundary conditions are as fol-
lows [37]:

∂2θ

∂x2
+

∂2θ

∂y2
= 0

θ(0, y) = 0

θ(Lx, y) = θ0

∂θ(x, 0)

∂y
= 0

θ(x, Ly) = 0

(13)

where θ denotes the temperature and Lx and Ly are
the length of plate in x and y directions. For solution,
first the temperature field is approximated in problem
domain with Chebyshev polynomials as follows:

θ =
n∑

i=0

m∑
j=0

aijTi(x)Tj(y) (14)

The derivatives of θ are derived as:
∂θ

∂y
=

n∑
i=0

m∑
j=0

aijTi(x)
∂Tj(y)

∂y

∂2θ

∂y2
=

n∑
i=0

m∑
j=0

aijTi(x)
∂2Tj(y)

∂y2

∂2θ

∂x2
=

n∑
i=0

m∑
j=0

aij
∂2Ti(x)

∂x2
Tj(y)

(15)

And then the collocation is applied to equation and
boundary conditions as:

n∑
i=0

m∑
j=0

aijTi(x)
∂2Tj(y)

∂y2

+

n∑
i=0

m∑
j=0

aij
∂2Ti(x)

∂x2
Tj(y) = 0

i = 1, 2, · · · , n− 1, j = 1, 2, · · · ,m− 1

m∑
j=0

a0jTi(0)Tj(y) = 0

m∑
i=0

anjTi(Lx)Tj(y) = θ0

n∑
i=0

ai0Ti(x)
∂Tj(0)

∂y
= 0

T

n∑
i=0

aimTi(x)Tm(Ly) = 0

(16)

By arranging all nodal equations, the set of algebraic
equations similar Eq. (12) is generated as follows:

Ka = F (17)

By solving this equation for unknown coefficients, the
temperature at any point of the plate is computed us-
ing Eq. (14).

It must be said that two-dimensional steady-state
heat conduction is selected here for comparison and
verification of the results. The results of the presented
method for the heat conduction equation are obtained
and compared with the analytical solution in Ref. [37].
Moreover, to show the convergence and stability of the
results, the temperatures were computed using various
collocation point sets (n,m), and presented in Table 1.
n and m are the numbers of collocation points in x and
y direction, respectively. In this example geometrical
dimensions are as below:

Lx = 1

Ly = 2

Table 1 shows that the Chebyshev collocation
method which is a very accurate and has very rapid
convergence in this analysis. Additionally, by increas-
ing the collocation points, the results remain stable and
converge more and more to the exact solution.

Table 1
Convergence and stability of temperature in a homogenous plate.

Points location (0.1, 0.3) (0.5, 0.5) (0.5, 1.4) (0.7, 1.6) (0.2, 1)
(n,m) = (3, 6) 9.8236 49.2857 40.9702 56.6553 17.9755
(n,m) = (6, 12) 9.8941 49.3930 40.3818 52.9455 18.4417
(n,m) = (8, 16) 9.8923 49.4037 40.4196 52.8603 18.4354
(n,m) = (10, 20) 9.8915 49.4076 40.4056 52.8431 18.4342
Analytical method [37] 9.8918 49.4034 40.4057 52.8253 18.4349
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µ

(
∂2ux

∂x2
+

∂2ux

∂y2

)
+ (λ+ µ)

∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)

+Fx = ρ
∂2ux

∂t2

µ

(
∂2uy

∂x2
+

∂2uy

∂y2

)
+ (λ+ µ)

∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)

+Fy = ρ
∂2uy

∂t2

(18)

where λ, µ, ρ, Fx, and Fy are Lame´’s constants, mass
density, and body forces in x and y direction, respec-
tively. The ux and uy are displacement fields in x and
y direction, respectively. The displacement field is ap-
proximated with Chebyshev polynomial as follows:

ux =

n∑
i=0

m∑
j=0

aijTi(x)Tj(y)

uy =

n∑
i=0

m∑
j=0

bijTi(x)Tj(y)

(19)

and
∂2ux

∂x2
=

n∑
i=0

m∑
j=0

aij
∂2Ti(x)

∂x2
Tj(y),

∂2ux

∂x∂y
=

n∑
i=0

m∑
j=0

aij
∂Ti(x)

∂x

∂Tj(y)

∂y

∂2uy

∂y2
=

n∑
i=0

m∑
j=0

bijTi
∂2Tj(y)

∂y2
,

∂2uy

∂x∂y
=

n∑
i=0

m∑
j=0

bij
∂Ti(x)

∂x

∂Tj(y)

∂y

∂2ux

∂y2
=

n∑
i=0

m∑
j=0

aijTi(x)
∂2Tj(y)

∂y2
,

∂2uy

∂x2
=

n∑
i=0

m∑
j=0

bij
∂2Ti(x)

∂x2
Tj(y)

(20)

For dynamic analysis (time-dependent) coefficient,
aij and bij are considered as functions of time, so

∂2ux

∂t2
=

n∑
i=0

m∑
j=0

äijTi(x)Tj(y),

∂2uy

∂t2
=

n∑
i=0

m∑
j=0

b̈ijTi(x)Tj(y)

(21)

For essential and traction boundary conditions, the
respective equations are as following: Essential B.C.
example:

ux

∣∣∣∣
x=Lx

= 0 (22)

Then
n∑

i=0

m∑
j=0

aijTi(L)Tj(y) = 0 ⇒ Ti(L) = 0 (23)

Traction B.C. example:

at y = Ly, σy = P (x), σxy = 0 (24)

then:[
(2µ+ λ)

n∑
i=0

m∑
j=0

aij
∂Ti(x)

∂x
Tj(y)

+ λ
n∑

i=0

m∑
j=0

bijTi(x)
∂Tj(y)

∂y

]
y=Ly

= P (x)

[
n∑

i=0

m∑
j=0

aijTi(x)
∂Tj(x)

∂y

+
n∑

i=0

m∑
j=0

bij
∂Ti(x)

∂x
Tj(y)

]
y=Ly

= 0

(25)

  It  should  be  mentioned  that  generally,  the  colloca-
tion  methods  have  the  problem  of  instability  in  their
analysis  especially  in  problems  containing  the  derivate
type  boundary  conditions,  but  in  Chebyshev  colloca-
tion  method,  as  can  be  observed  from  Table  1,  have  no
instability.  This  conclusion  is  confirmed  in  all  exam-
ples  solved  in  the  present  work.

3.2. Case study 2: Homogeneous Plate  in Plain
  Strain  Condition

Fig. 1 shows a  homogenous  plate  in  plane  strain  con-
dition  and  its  geometrical  parameters  in  a  Cartesian
coordinate  system.

Fig.  1.  Geometry  and  coordinates  of  homogenous
plain  strain  plate.

  For  a  two-dimensional  plane  strain  problem,  one
can  write  Navier’s  or  Lame´’s  equations  as  follows  [38]:
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By substituting Eqs. (20) and (21) in Eq. (19) and by
satisfying them at collocation points (xi, yi), the sys-
tem of dynamic equations is generated as follow:

Md̈+Kd = F (26)

where,

d =

[
aij
bij

]
, d̈ =

[
äij
b̈ij

]
Eq. (26) is the system of dynamic differential equa-

tions that should be solved to determine the values of
aij and bij at any time. This set of differential equa-
tions can be solved with any initial value numerical
methods, in this work, Newmark method was used.

For static analysis the right-hand sides of Eq. (18)
are zero and so the mass matrix M in Eq. (26) vanishes
and Eq. (26) is reduced to:

Kd = F (27)

So aij and bij are derived by solving these simple alge-
braic equations. In both dynamic and static solutions
by having the values of coefficients a1, a2, · · · , an and
b1, b2, · · · , bn and putting them in Eq. (19), the values
of displacement, strains and stresses at any location
(any time in dynamic cases) can be computed using
Eq. (19) and Hook’s low and also strain- displacement
relations. In free vibration analysis cases Eq. (26) is
reduced to:

Md̈+Kd = 0 (28)

The natural frequencies are obtained by solving the
eigenvalues of Eq. (28). As the first example of two-
dimensional structural analysis, static analysis of a
square domain in-plane strain condition is considered.
The problem is solved by the presented Chebyshev
collocation method and also the same problem is simu-
lated in FEM by ANSYS software. Material properties

and geometrical dimensions are as follows:

E = 207GPa ν = 0.3

Lx = Ly = 2(m)

And boundary conditions are:

At x = −1 ⇒ ux = uy = 0

At x = 1 ⇒ σx = 1MPa, σxy = 0

At y = −1, 1 ⇒ σx = σxy = 0

The displacements and stresses at some points of
plate obtained by present method are shown in Ta-
bles 2 and 3, the same results obtained by ANSYS are
also presented. This two tables show a very good ac-
curacy of the used Chebyshev collocation methods for
this static analysis.

3.3. Case study 3: FG Cylinder in Axisymmet-
ric Condition

To show the ability of this method, an FG cylinder
in the axisymmetric condition was analyzed. For the
FGM axisymmetric model, λ and µ are function of ra-
dial coordinate (r), so the Navier’s equations are not
as same as Eq. (18), because the derivates of λ and µ
with respect to coordinates are not zero and should be
considered in equilibrium equations. The equilibrium
equations for the axisymmetric condition are:

∂σr

∂r
+

∂τrz
∂z

+
(σr − σθ)

r
+ Fr = ρar

∂τrz
∂z

+
∂σz

∂z
+

1

r
τrz + Fz = ρaz

(29)

Table 2
Displacements for a square domain at some arbitrary points.

Displacement (µm) (−0.5, 0.5) (0,−0.5) (0, 0.7) (0.5,−0.5) (0.6, 0) (0.7, 1) (1,−1)

ux Present method 1.9570 4.1564 4.2314 6.3672 6.7566 7.3216 8.6407
ANSYS 1.9558 4.1543 4.2299 6.3659 6.7551 7.3218 8.6306

uy Present method 6.8235 9.2939 −1.3010 9.6965 0.0000 −1.9217 1.9521
ANSYS 6.8081 9.2824 −1.3008 9.6882 0.0000 −1.9221 1.9500

Table 3
Stresses fora square domain at some arbitrary points.

Stresses (MPa) (−0.5, 0.5) (0,−0.5) (0.1, 0.8) (0.5,−0.5) (0.6, 0) (0.6, 0.9) (0.9,−0.8)

σx Present method 1.0198 1.0094 0.9740 1.0030 1.0084 0.9890 0.9982
ANSYS 1.0198 1.0109 0.9747 1.0021 1.0081 0.9900 0.9992

σy Present method 0.0919 0.0070 −0.0015 −0.0060 −0.0118 −0.0018 −0.0038
ANSYS 0.0919 0.0080 −0.0003 −0.0065 −0.0124 −0.0005 −0.0028

σxy Present method −0.0436 −0.0110 0.1472 −0.0135 0 0.0063 −0.0022
ANSYS −0.0445 −0.0111 0.1440 −0.0138 0 0.0054 -0.0025
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Hook’s low with variable material property is writ-
ten as:

σij = λ(r)(εr + εθ + εz)δij + µ(r)εij (30)
Using strain-displacement relations in cylindrical coor-
dinate and Eq. (30), then substituting both of them in
the equilibrium Eq. (29), where λ and µ are function
of r, the equilibrium is rewritten as:

(λ+ 2µ)
∂2ur

∂r2
+ µ

∂2ur

∂z2
+ (λ+ µ)

∂2uz

∂r∂z
+

(
∂λ

∂r

+
λ+ 2µ

r
+ 2

∂µ

∂r

)
∂ur

∂r
+

∂λ

∂r

∂uz

∂z
+

(
1

r

∂λ

∂r

− λ+ 2µ

r2

)
ur = ρ

∂2ur

∂t2

µ
∂2uz

∂r2
+ (λ+ 2µ)

∂2uz

∂z2
+ (λ+ µ)

∂2ur

∂r∂z
+

(
∂µ

∂r

+
λ+ µ

r

)
∂ur

∂z
+

(
∂µ

∂r
+

µ

r

)
∂uz

∂r
= ρ

∂2uz

∂t2

(31)

The ur and uz are displacement fields in radial and ax-
ial direction, respectively, and are approximated with
Chebyshev polynomial as follows:

ur =

n∑
i=0

m∑
j=0

aijTi(r)Tj(z)

uz =
n∑

i=0

m∑
j=0

bijTi(r)Tj(z)

(32)

and
∂ur

∂r
=

n∑
i=0

m∑
j=0

aij
∂Ti(r)

∂r
Tj(z),

∂2ur

∂r2
=

n∑
i=0

m∑
j=0

aij
∂2Ti(r)

∂r2
Tj(z),

∂2ur

∂r∂z
=

n∑
i=0

m∑
j=0

aij
∂Ti(r)

∂r

∂Tj(z)

∂z
,

∂uz

∂z
=

n∑
i=0

m∑
j=0

bijTi(r)
∂Ti(z)

∂z
,

∂2uz

∂z2
=

n∑
i=0

m∑
j=0

bijTi(r)
∂2Tj(z)

∂z2
,

∂2uz

∂r∂z
=

n∑
i=0

m∑
j=0

bij
∂Ti(r)

∂r

∂Tj(z)

∂z
,

∂uz

∂r
=

n∑
i=0

m∑
j=0

bij
∂Ti(r)

∂r
Tj(z),

(33)

∂2uz

∂r2
=

n∑
i=0

m∑
j=0

bij
∂2Ti(r)

∂r2
Tj(z),

∂2ur

∂t2
=

n∑
i=0

m∑
j=0

äijTi(r)Tj(z),

∂2uz

∂t2
=

n∑
i=0

m∑
j=0

b̈ijTi(r)Tj(z),

By substituting Eq. (33) in Eq. (31), a set of equa-
tions same as Eq. (26) are generated. After solving a
set of equations, the unknown coefficients aij and bij
are obtained.

In both cases of the homogeneous, plane strain and
FGM axisymmetric cylinder by having the displace-
ment field, the strain and stress fields can be achieved
using strain-displacement and Hooke’s law.

The results of static analysis for homogeneous and
FGM cases are presented in Tables 4 and 5, and com-
pared with the results obtained in a work by Tutuncu
and Temel [39].

In the following part, free vibration analysis for the
square and rectangular domain is done. In this exam-
ple, the boundary condition (B. C.) is expressed by the
symbol of ABCD that A, B, C, and D are the types of
boundary conditions at plane x = x1, x = x2, y = y1,
and y = y2, respectively. It should be mentioned that
the symbols C and F are referred to as clamped and
free boundary conditions, respectively. Tables 6 and
7 show the first five natural frequencies for a square
and rectangular plate with various boundary condi-
tions, the square plate has dimensions of Lx = Ly = 2
and the rectangular plate has dimensions of Lx = 1,
Ly = 2. Both plates are in plane stress conditions.
Furthermore, the material properties for these cases
are as follows:

E = 207GPa ν = 0.3 ρ = 7800kg/m3

From Tables 6 and 7, it is obvious that the ob-
tained results are very close to those obtained by AN-
SYS, which shows the accuracy of Chebyshev spectral
methods for free vibration analysis.

Finally, to show the capability of the Chebyshev
collocation method for dynamic analysis, transient
analysis of a cylinder was performed and compared
with the results obtained with the Meshless method by
Alihemmati et al. [40]. The time-dependent set of ob-
tained differential equations in this example was solved
by the Newmark method. Fig. 1. Shows the time
history of radial displacement at the midpoint of cylin-
der obtained by the Chebyshev collocation method and
also the Meshless method presented in Ref. [40].

Journal of Stress Analysis/ Vol. 5, No. 2, Autumn − Winter 2020-21 117



Table 4
Stresses in radial direction for homogeneous axisymmetric cylinder.

r
σr (GPa) σθ (GPa)
Ref. [39] Present method Ref. [39] Present method

1 −1.0000 −1.0000 1.6666 1.6667
1.1 −0.7685 −0.7686 1.4352 1.4353
1.2 −0.5925 −0.5926 1.2592 1.2593
1.3 −0.4556 −0.4556 1.1222 1.1223
1.4 −0.3469 −0.3469 1.0136 1.0136
1.5 −0.2592 −0.2593 0.9259 0.9259
1.6 −0.1874 −0.1875 0.8541 0.8542
1.7 −0.1280 −0.1280 0.7946 0.7947
1.8 −0.0781 −0.0782 0.7448 0.7449
1.9 −0.0360 −0.0360 0.7026 0.7027
2 0.0000 0.0000 0.6666 0.6667

Table 5
Stresses in radial direction for FGM axisymmetric cylinder.

r
σr (GPa) σθ (GPa)
Ref. [39] Present method Ref. [39] Present method

1 −1.0000 −1.0000 1.2025 1.2026
1.1 −0.8031 −0.8032 1.1310 1.1311
1.2 −0.6443 −0.6444 1.0765 1.0765
1.3 −0.5136 −0.5137 1.0342 1.0342
1.4 −0.4043 −0.4043 1.0011 1.0012
1.5 −0.3115 −0.3115 0.9751 0.9751
1.6 −0.2317 −0.2318 0.9545 0.9545
1.7 −0.1625 −0.1625 0.9381 0.9382
1.8 −0.1017 −0.1017 0.9253 0.9253
1.9 −0.0479 −0.0480 0.9151 0.9152
2 0.0000 0.0000 0.9073 0.9073

Table 6
First five natural frequencies (Hz) of a homogeneous square domain

B.C. ω1 ω2 ω3 ω4 ω5

CFFF Present method 269.8 647.5 726.4 1154.4 1244.9
ANSYS 269.8 647.5 726.4 1154.4 1245.1

CCFF Present method 727.6 1297.2 1341.0 1440.1 1609.3
ANSYS 727.85 1296.8 1341.0 1439.9 1608.6

CCCC Present method 1527.8 1527.8 1820.0 2228.5 2517.7
ANSYS 1527.8 1527.8 1820.0 2228.5 2517.7

Table 7
First five frequencies (Hz) of a homogeneous rectangular domain.

B.C. ω1 ω2 ω3 ω4 ω5

CFFF Present method 269.8 647.5 726.4 1154.4 1244.9
ANSYS 269.8 647.5 726.4 1154.4 1245.1

CCFF Present method 727.6 1296.8 1341.0 1439.9 1608.6
ANSYS 727.85 1297.2 1341.0 1440.1 1609.3

CCCC Present method 1527.8 1527.8 1820.0 2228.5 2517.7
ANSYS 1527.8 1527.8 1820.0 2228.5 2517.7
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As can be observed from Fig. 2, there is a very close
agreement between two results that confirm the abil-
ity of the Chebyshev collocation method for dynamic
structural analysis.

Fig. 2. Time history of radial displacement at mid-
point of cylinder.

3.4. Case study 4: Axially Functionally Graded
Nanobeam with Non-classical Elasticity
Theories

In this case, free vibration analysis of axially func-
tionally graded nanobeam with radius varies along the
length was considered and solved with the presented
method. Both stress and strain gradient theories were
used. The governed equation is a six order differential
equation with variable coefficients that were derived
in a work by Zeighampour and Tadi Beni [41]. The
governed equation is as follows:

− k(x)
∂6w

∂x6
− 3

(
∂k(x)

∂x

)
∂5w

∂x5
+

(
s(x)

− 3
∂2k(x)

∂x2

)
∂4w

∂x4
+

(
2
∂s(x)

∂x
− ∂3k(x)

∂x3

)
∂3w

∂x3

+
∂2s(x)

∂x2

∂2w

∂x2
+m

∂2w

∂t2
= 0 (34)

And the boundary conditions for the clamped-clamped
supports case are as below:

w

∣∣∣∣
x=0,L

= 0

(
k(x)

∂w

∂x

)
|x=0,L = 0 (35)

(
k(x)

∂3w

∂x3

)
|x=0,L = 0

This is an example that the numbers of collocation
points are not equal to the number of the used Cheby-
shev polynomials, because at each endpoint (boundary
points) there are three equations, so the total number
of collocation points should be equal to the number of
equations. For this example, the nano beam deflection
is approximated by Chebyshev polynomials as:

w =

n∑
i=0

aiTi (36)

And the derivates of Eq. (36) are computed as follows:

∂2w

∂x2
=

n∑
i=0

ai
∂2Ti

∂x2

∂3w

∂x3
=

n∑
i=0

ai
∂3Ti

∂x3

∂4w

∂x4
=

n∑
i=0

ai
∂4Ti

∂x4

∂5w

∂x5
=

n∑
i=0

ai
∂2Ti

∂x5

∂6w

∂x6
=

n∑
i=0

ai
∂2Ti

∂x6

∂2w

∂t2
=

n∑
i=0

äiTi

(37)

By substituting Eqs. (36) and (37) into Eqs. (34) and
(35) a system of equations like Eq. (28) is generated
that the natural frequencies of nanobeam can be de-
rived from it.

The variation of mechanical properties along the
length of nanobeam is according to the Ref. [41] and
ER and EL show Young’s modulus in the right and left
direction of nanobeam.

Tables 8, 9, and 10 show the natural frequency pa-
rameters of nanobeam under various power low expo-
nent (PE) and various mechanical properties. In Table
8 the results are based on classical theory, table 9 shows
stress theory and Table 10 is based on strain gradient
theory.

Tables 8, 9, and 10 show that there is a very good
agreement between the present results and those ob-
tained by the Differential Quadrature Method (DQM)
[41]. Moreover, these results show that the Cheby-
shev collocation method can successfully be applied to
more complex equations of structural mechanics de-
rived based on nonclassical theory and also containing
FG material properties.
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Table 8
Fundamental frequency parameter for nanobeam based on classic theory.
EL/ER PE 0.5 1 2
0.5 Present method 1.0082 0.9576 0.9128
0.5 Ref. [41] 1.0035 0.9553 0.9106
1 Present method 1.1217 1.1217 1.1217
1 Ref. [41] 1.1190 1.1190 1.1190
2 Present method 1.2915 1.3542 1.4117
2 Ref. [41] 1.2893 1.3510 1.4088

Table 9
Fundamental frequency parameter for nanobeam based on couple stress theory.
EL/ER PE 0.5 1 2
0.5 Present method 1.1930 1.1330 1.0800
0.5 Ref. [41] 1.1874 1.1303 1.0775
1 Present method 1.3272 1.3272 1.3272
1 Ref. [41] 1.3241 1.3241 1.3241
2 Present method 1.5281 1.6023 1.6704
2 Ref. [41] 1.5255 1.5986 1.6669

Table 10
Fundamental frequency parameter for nanobeam based on strain gradient theory.
EL/ER PE 0.5 1 2
0.5 Present method 1.6028 1.5235 1.4500
0.5 Ref. [41] 1.5952 1.5233 1.4498
1 Present method 1.7832 1.7832 1.7832
1 Ref. [41] 1.7829 1.7829 1.7829
2 Present method 2.0535 2.1546 2.2502
2 Ref. [41] 2.0591 2.1543 2.2499

4. Conclusions

Chebyshev collocation method was applied to static,
free vibration, and dynamic analysis of some structural
mechanics. The more complicated cases of equations
of motion such as the case with FG material proper-
ties and a nanobeam with non-classical elasticity the-
ory were solved by this method. It was concluded that
the presented method has very good accuracy, stabil-
ity, and efficiency in static, free vibration, and dy-
namic analysis of solid structures. Additionally, the
same conclusion was observed for the heat conduction
analysis of solids. Another important conclusion was
that no instability of solution is observed in the present
method in spite of the other collocation methods that
are generally inaccurate and unstable in many situa-
tions especially for problems with second kind bound-
ary conditions.

As a disadvantage of the method, it should be
mentioned that in two-dimensional cases, this method
is applicable to domains that can be mapped into
square domains. For irregular domains that cannot be
mapped into a square domain, these domains should be
decomposed into some subdomains then each of them

can be mapped separately into a square domain and ap-
ply the Chebyshev collocation method to each of them.
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