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Abstract

Design procedure of pressure vessels is very important due to their vast
applications in many industries. This procedure is mainly based on determining
the stress and strain distribution, which is resulted from the internal pressure.
In this paper a thin-walled pressure vessel of circular-arc cross-section is
analytically studied. The vessel is a surface of revolution generated by rotating
a circular arc about an axis that neither intersects the arc nor necessarily
passes through the arc center. Both convex and concave vessels with open- and
closed-end conditions are considered. The equilibrium equations for a proper
element of the vessel surface are derived and solved analytically. Assuming
small deformation and elastic behavior for the vessel, the integral constant is
determined based on the end boundary conditions of the vessel. Since this
type of pressure vessel was not studied in the previous literature, the results
of present model are compared with similar ABAQUS Finite Element (FE)
simulation. A very close agreement was observed. This evidently implies the
validity of the presented model.

Nomenclature
C Integration constant p Internal pressure
t Vessel thickness R The radius of the generative circular arc
d The distance between the arc center and the

axis of symmetry
n̂φ, n̂θ, n̂R Unit vectors in φ−, θ− and R-direction, re-

spectively
r The distance between an arbitrary point P

on the vessel surface to the symmetry axis
rα The distance between the vessel edge the

axis of symmetry
φ Angular position of an arbitrary point P on

the vessel surface
z Dimensionless distance between the arc

center and the axis of symmetry
tα Vessel thickness along the φ = α edge σθ, σφ Hoop and longitudinal components of
α The angle of Half of the angel of the vessel stress, respectively

1. Introduction

Pressure vessels have a wide range of industrial appli-
cations. Among different types of vessels, thin-walled

vessels (with radius-to-thickness ratio of 10 or greater)
of cylindrical and spherical shapes are more popular.
Closed-end, as well as open-end cylindrical thin-walled
pressure vessels are extensively used to store liquids

∗Corresponding author: M. Salmani-Tehrani (Assistant Professor)
E-mail address: tehrani@iut.ac.ir
http://dx.doi.org/10.22084/jrstan.2021.24014.1179
ISSN: 2588-2597

13



and fluids. The stress state in a pressure vessel involves
only the three normal stress components in longitudi-
nal, radial, and hoop directions. Of course for thin-
walled vessels the radial stress component is neglected
compared with the two other components [1].

Most of the previous works focused on stress analy-
sis in cylindrical and spherical vessels. Only a few stud-
ies on the vessels other than cylindrical and spherical
shapes have been reported. Bargman [2] attempted to
predict the failure in pressure vessels. Assuming pres-
ence of some initial defects, such as crack, the effect
of initial defects on the failure of the vessel was stud-
ied. Hwang and Lin [3] utilized finite element simula-
tion to study free bulging in tube hydroforming. Based
on assuming an ellipsoidal surface for the tube during
forming process, a mathematical model was developed.
Strano and Altan [4] proposed an inverse energy ap-
proach to determine stress distribution across the tube
wall in the tube hydroforming. In this research, the
tube profile was approximated by a cosine-like func-
tion and then according to volume constancy, the wall
thickness was calculated. They showed that if the
stress-strain curve which is obtained by this method is
used as the input to Finite Element (FE) simulation,
the results would show a better accuracy. Rahimi and
Roozegar [5] analyzed the elastic-plastic behavior of a
cylindrical vessel with different types of lids, such as
spherical, elliptical, and coil shapes. They also consid-
ered a nozzle on the lid and analyzed the effect of type
and thickness of the lid and existence of nozzle on limit
plastic load and yield stress. Abrinia and Dehghani
[6] investigated the elastic-plastic behavior of a thick-
walled cylindrical vessel under sudden internal pres-
sure. The effect of work-hardening coefficient, strain
rate, and temperature were taken into consideration in
their models. Boumaiza et al. [7] studied plastic insta-
bility of a tube in bulging test. They showed that for
short tubes the effect of geometric changes should be
taken into account. Lopes et al. [8] studied the effect of
initial geometric imperfections on the plastic stability
of a thick-walled cylinder under internal pressure, using
both numerical and experimental approaches. Djavan-
roodi et al. [9] analyzed free bulge tube hydroforming
process analytically and numerically. In their analyti-
cal approach, it was assumed that the cylindrical tube
remains cylindrical during forming.

Velasco and Boudeau [10] presented a theoretical
analysis for tube bulging test. In this study, the bulged
zone was assumed to be axially symmetric. An area
enclosed by two circular arcs with different radii was
considered for the tube wall in bulge zone. The ana-
lytical results, including the pole thickness during the
test, final thickness over the whole bulged zone, and the
stress-strain curve were validated by comparing with
FE simulation results. Bortot et al. [11] dealt with
studying the stress state in tube hydroforming process.
In this research, an analytical model coupled with ex-

periments to obtain stress-strain curve. Comparing the
analytical results by Finite Element (FE) simulation, it
was shown that a good agreement exists. Ben Ouirane
et al. [12] tried to evaluate the error on experimen-
tal stress-strain curve obtained from tube bulging test.
For this purpose the experimental results were com-
pared with those of the analytical model proposed in
Ref. [10]. Boudeau and Male´cot [13] presented a sim-
plified analytical model for tube bulging test. Based
on Finite Element (FE) simulations, the profile of the
tube in the bulging test was approximated by a circular
arc. The stress distribution was then calculated based
on the analytical model of Ref. [10]. Kru˙zelecki and
Proszwoski [14] dealt with optimization of the shape
of the lid for a thin-walled pressure vessel. Two differ-
ent types of single- and double-arc profiles were con-
sidered in this regard. Using numerical optimization,
a single-arc profile of polynomial type was proposed
for the lid. Chaaba [15] studied the plastic collapse
of a thin-walled pressure vessel, considering large de-
formation and strain hardening effects. He et al. [16]
developed an analytical model for free tube bulging. In
this model, the equilibrium for an element at the cen-
tral point in the bulge zone (the section with the maxi-
mum bulge height) was examined. Assuming that axial
stress component for this element should be the same
as in cylindrical shell, the stress components for this el-
ement were determined. The profile of the bulged tube
was fitted by an elliptical curve. To validate the anal-
ysis, the model prediction was compared with similar
Finite Element (FE) simulation results and a good cor-
relation was reported. In another work, He et al. [17]
proposed a linear variation of thickness of the tube wall
in bulging process. This assumption was then incorpo-
rated into the analytical model presented in their pre-
vious work [16], to derive the equivalent stress-strain
relation for the central point in the bulge zone (the
section with the maximum bulge height). The analyt-
ically computed stress-strain curve was collated with
that of obtained from the simple tension test and an
acceptable agreement was observed. Zamaninejad and
Fatehi [18] dealt with the elastic-plastic deformation
of a rotating thick-walled cylindrical pressure vessel,
under uniform internal and external pressure. The
state of deformation was assumed to be plane-strain.
Tresca’s yield criterion along with elastic-ideal plastic
stress-strain relation was used to model the material
behavior. The model also accounted for the density
variation. Babeshko et al. [19] utilized numerical sim-
ulation to investigate the stress-strain state and the
strength of a thin-walled pressure vessel under high
pressure. Ibrahim et al. [20] discussed the stress dis-
tribution in thin-walled cylindrical and spherical pres-
sure vessels. Applying the static equilibrium equations
for a special part of the vessel, the stress components
were consequently calculated. As a case study, the
strain components on the wall of a soda can be ex-
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perimentally measured. Assuming elastic deformation,
the experimental strains and Hook’s law were used in
the stresses obtained from the model, to evaluate the
internal pressure of the can. Mulder et al. [21] used
optical measuring system in the bulge test to deter-
mine the flow curves. They saw that if the coordinates
of the cross-section of the tube was estimated by an
ellipsoid shape, the maximum accuracy was achieved.
Also using two equilibrium equations for stresses of the
tube and assuming a linear variation of the thickness
strain, they could approximate the stresses of the tube
wall. Cui et al. [22] analyzed the bulging process of
thick-walled aluminum alloy tubes under double-sided
pressure experimentally and numerically. In this re-
search, the stress distribution was obtained by finite
element simulation and the effect of external pressure
on bulging parameter, such as bulging profile and tube
thickness was studied. Liu et al. [23] presented an an-
alytical model to determine the pressure-time loading
profile for free tube bulging. In this study, the tube
line in the free bulging zone was recognized as an el-
lipse. Furthermore, the axial stress was considered as
this in cylindrical tube and the circumferential stress
can be derived from equilibrium equation. Cui et al.
[24] characterized the stress-strain response of double-
sided pressure tube bulging test. For stress calculation,
they used analytical model that was expressed in Ref.
[16]. Wu et al. [25] using three-dimensional digital
image correlation method and fitting a curve through
the coordinate data, extracted the tube profile during
bulging. Then by using equilibrium equation for an
element in the middle of the tube, stresses were ob-
tained. Finally finite element simulation was used for
the validation of the method. Song and Hui [26] cal-
culated the forming pressure of corrugated tubes using
incremental plasticity theory. The profile of tube dur-
ing bulging was an arc and the equilibrium equation
for an element at the middle of the arc was extracted.
Then by considering longitudinal stress as in cylindri-
cal tube, hoop stress was obtained. Numerical simula-
tion and experiments were also done for validation of
explained model.

As previously pointed out, the majority of the pub-
lished studies dealt with studying deformation analysis
of cylindrical and spherical vessels. To the best knowl-
edge of authors, the pressure vessel with circular-arc
cross-section was not considered. Of course in some
of the studies in free tube bulge test, such as Ref.
[10,12,13], the profile of the bulged tube was assumed
to be a circular arc. However, in these studies, in some
parts of the equilibrium equations, the curvature of the
generative arc has been ignored but in this study the
curvature of the arc is considered in all equations. In
the present paper, a thin-walled pressure vessel with
circular-arc cross-section is analytically studied and
closed-form equations for stress distribution are de-
rived. The vessel surface is generated by rotating a

circular arc about an axis that neither intersect the
arc nor necessarily pass through the arc center. Both
convex and concave vessels with open- and closed-end
conditions are considered. The analytical equations
obtained in this paper can be used to determine stress
distribution in similar geometries, such as bulged zone
in free tube bulging process and toroidal surfaces like
vehicle’s tires. Then for an element of the vessel sur-
face, equilibrium equations are extracted and by solv-
ing these equations analytically stress distribution on
the vessel surface is determined. In order to verify the
results, the obtained results were compared with finite
element simulation by ABAQUS software. Finally, by
introducing the non-dimensional stresses, effect of geo-
metrical parameters of cross section on distribution of
non-dimensional stresses are studied.

2. Differential Equations of Equilibrium
and Analytical Solution

In this paper a vessel with circular-arc cross-section un-
der internal pressure is analytically studied. As shown
in Fig. 1, the vessel is a surface of revolution which
is generated by rotating a circular arc (generative arc)
about an axis of symmetry. The symmetry axis nei-
ther intersects the arc nor necessarily passes through
the arc center. Both of convex and concave vessels are
shown in this figure. As it can be seen from the figure,
in convex vessel the symmetry axis and the arc cen-
ter are both located on the same side of the arc. On
the other hand in concave vessel the arc lies between
the symmetry axis and the arc center. In the following
of this section, the governing differential equations for
the both convex and concave vessel are derived. Due
to uncommon geometry of the vessel surface, a proper
surface element is used for this purpose. Then the equi-
librium equations are analytically solved to determine
the stress distribution within the vessel.

Fig. 1. Schematic representation of a thin-walled pres-
sure vessel with circular-arc cross-section; a) Convex
vessel, b) Concave vessel.

2.1. Convex Vessel

Fig. 2 shows the geometry of the generative arc for
a convex vessel. In this figure z-axis is the symme-

Journal of Stress Analysis/ Vol. 6, No. 1, Spring − Summer 2021 15



try axis and point O’ is the center of the generative
arc. Because of the symmetry of the vessel with re-
spect to xy-planes, only one half of the arc is shown.
The distance between an arbitrary point P on the ves-
sel surface, to the symmetry axis, is denoted by r. The
radial distance r is a function of the angle φ and is
given by Eq. (1).

r = R cosφ− d (1)

Fig. 2. Section geometry for a convex vessel with
circular-arc cross-section.

In Eq. (1), R is the arc radius and d denotes for
the distance between the arc center and the symmetry
axis (Fig. 2). It is worth reminding that R, d, and α in
Eq. (1) are constant parameters of the section which
don’t depend on the variable φ.

To derive the differential equations of equilibrium,
the equilibrium of a surface element of the vessel is
examined. The surface element ABCD illustrated in
Fig. 3, is generated by rotating the arc element MN

about the z-axis, through a small angle dθ. In this fig-
ure, the arc element MN (with the length of Rdφ), and
hence its center O’, lies in xz-plane. This means that
the xz-plane is the plane of symmetry for this element.
Moreover, the colored zone A′B′C ′D′ in the figure rep-
resents the projection of the surface element ABCD on
the xy-plane.

In order to express the equilibrium equations in
component form, five outward unit vectors are intro-
duced based on the element geometry. These include
four unit vectors perpendicular to the midpoint of the
four edge sides of the element (AB, BC, CD, AD) and
one unit vector perpendicular to the midpoint of ele-
ment face. These unit vectors can be easily shown in
2D views as illustrated in Fig. 3. It should be noted
that the unit vectors perpendicular to the edges AB
and CD (n̂Left

θ and n̂Right
θ respectively) are parallel to

the xy-plane.
According to Fig. 3b, the unit vectors perpendicu-

lar to the top and bottom sides of ABCD surface ele-
ment, in the Cartesian coordinates, are given by Eqs.
(2) and (3).

n̂Bot
φ = +sin(φBot)̂i− cos(φBot)k̂ (2)

n̂Top
φ = − sin(φTop)̂i+ cos(φTop)k̂ (3)

The angles φBot and φTop are obtained from Eqs. (4)
and (5) (Fig. 3b).

φBot = φ− 1

2
dφ (4)

φTop = φ+
1

2
dφ (5)

Fig. 3. Representation of an arbitrary element for a covex vessel, a) 3D representation, b) 2D view in xz-plane,
c) 2D view in xy-plane.
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Substituting Eqs. (4) and (5) into (2) and (3) and
given that dφ is a very small angle, Eqs. (2) and (3)
are rewritten as (6) and (7).

n̂Bot
φ =

(
sinφ− 1

2
cosφdφ

)
î

−
(
cosφ+

1

2
sinφdφ

)
k̂

(6)

n̂Top
φ = −

(
sinφ+

1

2
cosφdφ

)
î

+

(
cosφ− 1

2
sinφdφ

)
k̂

(7)

Similarly, unit vectors perpendicular to the right and
left sides of ABCD surface element, in the Cartesian
coordinates, are expressed by Eqs. (8) and (9).

n̂Left
θ = −1

2
dθî− ĵ (8)

n̂Right
θ = −1

2
dθî+ ĵ (9)

According to the Fig. 3b, unit vectors in R and φ
directions are given by (10) and (11).

n̂R = cosφî+ sinφk̂ (10)

n̂φ = − sinφî+ cosφk̂ (11)

It should be noted that the unit vector n̂φ corresponds
to the central point of element ABCD andn̂Bot

φ and
n̂Top
φ vectors correspond to the bottom and top edges

of the element, respectively.
Before proceeding to derive the equilibrium equa-

tions, the forces which are applied on the element
ABCD should be introduced. Stresses on the surface
element ABCD consist of the internal pressure applied
on the internal surface, σ̂Top

φ and σ̂Bot
φ which act on the

top and bottom sides and σLeft
θ and σRight

θ acting on
the left and right sides of the surface element. Assum-
ing isotropic behavior for the vessel and uniform thick-
ness in θ direction, the problem is an axially-symmetric
one. This implies that all field variables are indepen-
dent of θ, and hence σRight

θ = σLeft
θ = σθ. Moreover

the equilibrium along the hoop direction is automat-
ically satisfied due to the axial symmetry. Therefore
only two independent equilibrium equations exist for
the element. The equilibrium in R direction, with cor-
responding unit vector n̂R (shown in Fig. 3), is first

examined.∑
FR = 0 ∴

p(Rdφrdθ) + σTop
φ (tToprTopdθ)(n̂Top

φ · n̂R)

+ σBot
φ (tBotrBotdθ)(n̂Bot

φ · n̂R)

+ σθ(tRdφ)(n̂Left
θ · n̂R + n̂Right

θ · n̂R) = 0 (12)

In Eq. (12) tTop and rTop denote for thickness of
the top edge and distance between top edge to the sym-
metry axis, respectively. Similarly, tBot and rBot are
defined for the bottom edge AD, t and r indicate the
thickness and distance from the symmetry axis at the
central point of the surface element. The dot product
of unit vectors in Eq. (12) is appeared to determine
the projection of each force along R-direction. Substi-
tuting unit vectors from Eqs. (3), (4), (9), (10) and
(11) and dividing by (dθdφ), the result is simplified as
Eq. (13).

σφrt+Rtσθ cosφ = Rrp (13)

In Eq. (13), the term (σφtr), which has been re-
placed for 1

2
(σTop

φ tToprTop+σBot
φ tBotrBot) in Eq. (12),

refers to the value of the expression evaluated at the
central point of the surface element. Eq. (13) is rear-
ranged as (14).

σφ

R
+

σθ

r
cosφ =

p

t
(14)

Now equilibrium in φ-direction, with corresponding
unit vector n̂φ, is examined.∑

Fφ = 0 ∴

σTop
φ (tToprTopdθ)(n̂Top

φ · n̂φ)

+ σBot
φ (tBotrBotdθ)(n̂Bot

φ · n̂φ)

+ σθ(tRdφ)(n̂Left
θ · n̂φ + n̂Right

φ · n̂φ) = 0 (15)

Again by substituting the unit vectors from Eqs.
(2), (3), (8), (9), and (11) in (15) and dividing by dθ,
Eq. (16) is obtained.

(σTop
φ tToprTop − σBot

φ tBotrBot)

+(σθRt)dφ sinφ = 0
(16)

The term (σTop
φ tToprTop−σBot

φ tBotrBot) in Eq. (16)
means a very small variation of (σφtr), from the bot-
tom edge AD to the top edge BC. Replacing this term
by d(σφtr), Eq. (16) can be rewritten as (17).

d(σφtr) + (σθRt) sinφdφ = 0 (17)
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Substitutingσθ in terms of σφ from Eq. (14), Eq. (17)
can be written in the form of Eq. (18).

d(σφtr) +Rrt tanφ
(p
t
− σφ

R

)
dφ = 0 (18)

Multiplying both sides of Eq. (18) by cosφ and divid-
ing by dφ, Eq. (19) is obtained.

d(σφrt)

dφ
cosφ− (σφrt) sinφ = −(Rrp) sinφ (19)

Eq. (19) can be rewritten as the differential Eq. (20).

d(σφrt cosφ)

dφ
= −(Rrp) sinφ (20)

On the right hand side of Eq. (20), (Rp) is constant,
while the term (r sinφ) is a function of φ. Substituting
r from Eq. (1) and integrating with respect to φ, Eq.
(21) is obtained.

σφ =
R2p

rt

(
1

2
cosφ− d

R
+

C

cosφ

)
(21)

In Eq. (21), C is the constant of integration. Now,
substituting for σφ from Eq. (21) into Eq. (14), results
in Eq. (22) for σθ.

σθ =
Rp

t

(
1

2
− C

(cosφ)2

)
(22)

Fig. 4. Illustrating the forces acting on the lid of a
convex vessel.

The integral constant C is determined based on σφ-
boundary condition, on the vessel edge (φ = α). For
an open-end vessel, the free stress boundary condition
is applied, as Eq. (23).

σα = σφ(φ = α) = 0 (23)

Consequently, the constant C is obtained as Eq.
(24).

C = (cosα)2
(
−1

2
+

d

R cosα

)
(24)

Now substituting C into Eqs. (21) and (22), σφ and

σθ are given by Eqs. (25) and (26).(
t

R

)(
σφ

p

)
=

1(cosφ
cosα

)
−

(
d

R cosα

) ×

[
1

2

(
cosφ

cosα

− cosα

cosφ

)
−

(
d

R cosα

)(
1− cosα

cosφ

)]
(25)

(
t

R

)(
σθ

p

)
=

1

2
+

1

2

(
cosα

cosφ

)2

−
(

d

R cosα

)(
cosα

cosφ

)2

(26)

For closed-end vessel, the σφ which is applied on the
vessel edge (at φ = α) should be determined through
the static equilibrium of the lid. As illustrated in Fig.
4, it is assumed that on the top edge, along which the
lid is connected to the vessel, only σφ is. Thus, using
the equilibrium equation for the lid in z-direction, the
stress σφ along the φ = α edge is obtained as equation
(27).

σα = σφ(φ = α) =
p(πr2α)

(2πrαtα) cosα
(27)

In Eq. (27), tα is the vessel thickness along φ = α edge.
Radial distance rα and the angle α are also shown in
Fig. 4. According to this figure, rα is determined from
Eq. (28).

rα = R cosα− d (28)

Consequently, using boundary condition (27) and sub-
stituting rα from (28), the integral constant C in (21)
is obtained as Eq. (29).

C =
1

2

(
d

R

)2

(29)

Finally, by substituting C from (29) into (21) and (22),
stress components for a convex closed-end vessel are
given by Eqs. (30) and (31).(

t

R

)(
σφ

p

)
=

1(cosφ
cosα

)
−

(
d

R cosα

) ×

[
1

2

(
cosφ

cosα

)

−
(

d

R cosα

)
− 1

2

(
d

R cosα

)2 (
cosα

cosφ

)]
(30)

(
t

R

)(
σθ

p

)
=

1

2
− 1

2

(
d

R cosα

)2 (
cosα

cosφ

)2

(31)

2.2. Concave Vessel

Similar to convex vessel, Fig. 5 shows one-half of the
arc cross-section of the concave vessel with z-axis as the
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symmetry axis and point O’ as the arc center. Accord-
ing to this figure, the distance between an arbitrary P
point on the section to the symmetry axis, which is de-
noted by r, is determined in terms of the corresponding
angel φ from Eq. (32).

r = d−R cosφ (32)

Fig. 5. Representation of the cross-section of the con-
cave vessel.

Similar to Eq. (1), in Eq. (32) R is the arc radius
and d is the distance between arc center (point O’) to
symmetry axis (z-axis) (Fig. 5). Moreover, R, d and
α, are constant parameters which don’t depend on φ.
Due to the similarity of equations with those of convex
vessel, only the final equations are presented for con-
cave vessel. Equilibrium for an element of the concave
vessel in R-direction leads to Eq. (33).

−σφ

R
+

σθ

r
cosφ =

p

t
(33)

Also Equilibrium in φ-direction is results in Eq.
(34).

d(σφrt cosφ)

dφ
= −(Rrp) sinφ (34)

Integrating (34) with respect to φ, Eq. (35) is ob-
tained for σφ.

σφ =
R2p

rt

(
1

2
cosφ− d

R
+

C

cosφ

)
(35)

Substituting σφ from (35) into (33), σθ is determined
as Eq. (36).

σθ =
Rp

t

(
−1

2
+

C

(cosφ)2

)
(36)

Similar to convex vessel, the integral constant C in
(35) and (36) should be determined based on the end
boundary condition of σφ in the vessel edge (φ = α).
For open-end condition, boundary condition the same
as (23). Therefore Eq. (37) is obtained for the constant
C.

C = (cosα)2
(
−1

2
+

d

R cosα

)
(37)

Substituting C from (37) into (35) and (36), stress com-
ponents in φ- and θ-directions are obtained from Eqs.
(38) and (39).(

t

R

)(
σφ

p

)
=

1(
d

R cosα

)
−

(cosφ
cosα

) ×

[
1

2

(
cosφ

cosα

− cosα

cosφ

)
−
(

d

R cosα

)(
1− cosα

cosφ

)]
(38)

(
t

R

)(
σθ

p

)
= −1

2
− 1

2

(
cosα

cosφ

)2

+

(
d

R cosα

)(
cosα

cosφ

)2

(39)

Fig. 6. Illustrating the forces acting on the lid of the
concave vessel.

Similar to the convex vessel, for a closed-end con-
cave vessel the integral constant C is determined from
equilibrium of the lid in z-direction. Fig. 6 shows the
lid for a concave vessel and the forces acting on it. De-
termining the constant C and substituting into (35)
and (36) yield Eqs. (40) and (41) for stress component
in a closed-end concave vessel.(

t

R

)(
σφ

p

)
=

1(cosφ
cosα

)
−

(
d

R cosα

) ×

[
1

2

(cosφ
cosα

)

−
(

d

R cosφ

)
− 1

2

(
d

R cosα

)2 (
cosα

cosφ

)]
(40)

(
t

R

)(
σθ

p

)
= −1

2
+

1

2

(
d

R cosα

)2 (
cosα

cosφ

)2

(41)

3. Finite Element Simulation

Because the vessel which was considered in the present
work has not been studied before, the results of the pre-
sented model are compared with Finite Element (FE)
simulations to verify the model. FE simulations were
carried out using ABAQUS commercial software. As
the problem is axisymmetric with one additional plane
of symmetry, only one-half of the cross-section arc was
modeled. Steel mechanical properties were assumed for
the material behavior of the vessel (Table 1).
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Table 1
Mechanical properties of the vessel in FE simulations [27].
E (GPa) ν
200 0.3

Fig. 7. FE model of the vessel, a) Convex vessel, and
b) Concave vessel.

For an open-end vessel, free boundary condition
was used for the vessel edge. On the other hand, for
a closed-end vessel, in order to avoid stress concentra-
tion on the connection edge, an extra edge tangent to

the arc was designed. Here, in order to define the joint
between the vessel and the lid, the translational de-
grees of freedom of the edges of the vessel and lid were
considered to be identical. A low internal pressure was
applied to ensure small deformation. The vessel (with
a radius of 0.2m) was meshed using 100 axisymmetric
shell elements and the lid was modeled as an analytical
rigid body. A single general static step was used for
the analysis. After completing the simulation, longitu-
dinal and hoop stress were extracted from simulations
and compared with those of analytical model.

4. Results and Discussion

In this section the results of analytical model is first
verified by comparing with Finite Element (FE) sim-
ulation. Then, the effect of geometrical parameters
of cross-section on dimensionless stress components in
longitudinal and hoop directions is investigated.

4.1. Model verification

Figs. 8 to 11 illustrate the comparison between di-
mensionless stresses obtained from analytical approach
with similar results of FE simulations. In Figs. 8 and 9,
the comparison is made between open-and closed-end
convex vessels, respectively. Similarly Figs. 10 and 11
represent the results for open- and closed-end concave
vessels. For more comprehensive investigation, in each
of these figures the stress curve has been plotted for
two different arc angles of α = 30◦ and α = 45◦. It
is worth mentioning that for α = 45◦ in convex vessel,
the arc center lies on the axis of symmetry. Therefore
the stress state in within the vessel corresponds to the
stress in a spherical thin-walled vessel under internal
pressure. Consequently, the dimensionless stress com-
ponents of σθ and σφ are equal to 0.5.

Fig. 8. Comparing between analytical and FE simulation results for dimensionless stress components, for an
open-end convex vessel, a) α = 30◦, and b) α = 45◦.
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Fig. 9. Comparing between analytical and FE simulation results for dimensionless stress components, for an
closed-end convex vessel, a) α = 30◦, and b) α = 45◦.

Fig. 10. Comparing between analytical and FE simulation results for dimensionless stress components, for an
open-end concave vessel, a) α = 30◦, and b) α = 45◦.

Fig. 11. Comparing between analytical and FE simulation results for dimensionless stress components, for an
closed-end concave vessel, a) α = 30◦, and b) α = 45◦.
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A very close agreement between analytical and FE
simulation results is observed in Figs. 8 to 11. This
evidently indicates the validity of the proposed analyt-
ical model. It should be mentioned that, since in the
equilibrium equations of analytical solution, the curva-
ture of the generative arc has not been ignored and the
error between analytical solution and Finite Element
(FE) simulation is negligible for vessels with different
curvatures and for different input parameters.

4.2. Investigating the Effect of the Vessel Ge-
ometry

After the model was validated, a parametric study is
now carried out to investigate the effect of geometric
parameters. In this regard, the effect of the parameters
by which the geometry of the vessel is defined, on the
stress distribution, is analytically studied. To this end,
according to the analytical equations for stress com-
ponents, the dimensionless parameter z is defined as
equation (42).

z =
d

R cosα
(42)

In fact, the dimensionless parameter z indicates the
dimensionless distance between the arc center and the
symmetry axis. According to Fig. 5, the ranges of
variation of z for convex and concave vessels are as
inequalities (43).

z ≤ 1 , Convex Vessel (43)

z ≥ 1

cosα
, Concave Vessel (44)

As can be seen from Fig. 2, for convex vessel, a pos-
itive value of z implies that the arc and center of the arc
are in opposite sides of the symmetry axis. However,
a negative value of z means that both of the arc and
its center are located at the same side of the symmetry
axis. On the other hand, for concave vessel, both of
the arc and its center are always located in the same
side of the symmetry axis.

The geometric parameters which are to be inves-
tigated include the type of the vessel (convex or con-
cave), the effect of the vessel end-conditions (with or
without the lid), dimensionless distance z, and the an-
gle of the arc, α. In Fig. 12 to 23 dimensionless stress
components are plotted for open-end/closed-end con-
vex/concave vessels, for three different values of α. In
order to investigate the effect of the dimensionless dis-
tance z, in each case the curves corresponding to dif-
ferent values of z are reported. In these figures the
horizontal axis indicates the normalized angle (φ/α),
which specifies the longitudinal position of the point
along the arc. As (φ/α) increases from 0 to 1, the
point moves from the midpoint towards edge-point of
the vessel (Fig. 2).

Figs. 12-14 and 15-17 are devoted to open-end and
closed-end convex vessel, respectively. Similarly, Figs.
18-20 and 21-23 present the results for open-end and
closed-end concave vessel, respectively.

According to the figures, for an open-end vessel
(convex or concave), as expected, a zero longitudinal
stress is observed on the vessel edge. There is, however,
a difference between convex and concave vessel. The
longitudinal stress in open-end convex vessel is posi-
tive, while for an open-end concave vessel the longitu-
dinal stress is negative. This is due to the fact that in
open-end convex vessel the internal pressure results in
increasing the curvature of the section arc, which this,
in turn, causes longitudinal tension in the vessel wall.
But for a concave vessel the internal pressure make the
vessel wall to be longitudinally compressed. Therefore
it is expected that for open-end vessel, as the angle
α increases, so does the longitudinal stress. On other
hand for concave vessel, a reverse effect is expected.
This is confirmed by the results shown in Figs. 12-14
and 18-20.

Another point about the results for open-end vessel
is that, regardless of the stress sign, the hoop stress is
much greater than the longitudinal. Furthermore, as
the angle α decreases, not only does the magnitude
of the longitudinal stress decrease, but also a more
uniform distribution of longitudinal stress is observed.
The reason is that as the angle α decreases, the vessel
shape becomes more similar to a cylindrical vessel.

Note that for a closed-end convex vessel with z = 0,
the stress state within the vessel wall become the same
as a spherical vessel. This is an expected result because
the arc center lies on the symmetry axis for z = 0. For
this reason the stress curves for z = 0 in Figs. 15-17
are observed as a constant function (straight line) with
the value equal to 0.5.

Concerning the effect of dimensionless distance z,
the results reveal that, in general, as the arc gets far
away from the symmetry axis, the longitudinal stress
grows up for all the cases. Of course it should be re-
membered that based on the definition of the param-
eters d, hence z, for the arc to get far away from the
symmetry axis, z should decrease below the zero and
become more and more negative. However for concave
vessel, the distance between the arc and the symmetry
axis increases when z increases. A similar result holds
for hoop stress, except for closed-end convex vessel.
The reason of this stress growing is that as the arc gets
farther away from the axis, the distance between the
points on the section and the axis increases. A similar
situation arises for a cylindrical pressure vessel when
the radius of the cylinder increases. Of course, this is
not the case for closed-end convex vessel. As can be
seen from Eq. (31), the hoop stress in closed-end con-
vex vessel depend on the square of z and, consequently,
the sign of z does not affect on the hoop stress.
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Fig. 12. Stress distribution for open-end convex vessel with α = 15◦, a) Longitudinal stress (σφ), and b) Hoop
stress (σθ).

Fig. 13. Stress distribution for open-end convex vessel with α = 30◦, a) Longitudinal stress (σφ), and b) Hoop
stress (σθ).

Fig. 14. Stress distribution for open-end convex vessel with α = 45◦, a) Longitudinal stress (σφ), and b) Hoop
stress (σθ).
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Fig. 15. Stress distribution for closed-end convex vessel with α = 15◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 16. Stress distribution for closed-end convex vessel with α = 30◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 17. Stress distribution for closed-end convex vessel with α = 45◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).
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Fig. 18. Stress distribution for open-end concave vessel with α = 15◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 19. Stress distribution for open-end concave vessel with α = 30◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 20. Stress distribution for open-end concave vessel with α = 45◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).
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Fig. 21. Stress distribution for closed-end concave vessel with α = 15◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 22. Stress distribution for closed-end concave vessel with α = 30◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).

Fig. 23. Stress distribution for closed-end concave vessel with α = 45◦, a) Longitudinal stress (σφ), and b)
Hoop stress (σθ).
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When the lid is added to the vessel, for all the cases,
the longitudinal stress increases, and simultaneously, a
more uniform distribution of longitudinal stress is ob-
served. The reason is somehow clear, because the zero
longitudinal stress on the edge, for an open-end ves-
sel, is replaced by a tensile longitudinal stress along
the edge, for a closed-end vessel. However, the effect
of adding the lid on the hoop stress is not the same
for convex and concave vessels. In a convex vessel,
due to the direction of the longitudinal stress which
is applied by the lid, the opening of the vessel tends
to shrink; hence, the hoop stress decreases. But, in
a concave vessel, the direction of tensile longitudinal
stress on the edge makes the opening to expand, and
this results in increasing the hoop stress.

5. Conclusions

In this paper an analytical study of stress distribution
in a special type of thin-walled pressure vessel was pre-
sented. The vessel is a surface of revolution generated
by rotating a circular arc about an axis that neither
intersects the arc nor necessarily passes through the
arc center. Two types of convex and concave vessels
with both of open- and closed-end conditions were in-
vestigated. As a result of this study, closed-form equa-
tions were derived for the stress components within
the vessel wall, caused by the internal pressure. Since
this type of vessel was not studied in the previous re-
searches, the present analytical results were compared
with those of Finite Element (FE) simulations. The
results are summarized as follows:

1. A very close agreement between analytical re-
sults and Finite Element (FE) simulations was
observed, which evidently shows the validity of
the analytical model.

2. Using the proposed analytical model, the effect
of different geometric parameters on the stress
distribution was studied. The results show that
the stress state in a closed-end convex vessel, in
which the symmetry axis passes through the cen-
ter of the generative arc, is the same as that of a
thin-walled spherical pressure vessel.

3. When the lid is added to the vessel, the longitudi-
nal stress increases and simultaneously becomes
more uniformly distributed.

4. The effect of lid in the hoop stress in convex ves-
sel and concave vessel are different. In convex
vessel the hoop stress decreases if the lid is added
to the vessel. Whereas in a closed-end concave
vessel the hoop stress increases due to existence
of the lid, when compared with similar open-end
concave vessel.
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