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Abstract

For the Resistance Spot Welding (RSW) process, the effects of Welding
Current (WC), Electrode Force (EF), Welding Cycle (WCY), and Cooling
Cycle (CCY) on the Tensile-Shear Strength (TSS) of the joints have been
experimentally investigated. An Adaptive Neural-Fuzzy Inference System
(ANFIS) based on data taken from the test results were developed for
modelling and predicting of TSS of welds. Optimal parameters of ANFIS
system were extracted by Gray Wolf Optimization (GWO) algorithm. The
results show that ANFIS network can successfully predict the TSS of RSW
welded joints. It can be concluded that the coefficient of determination
and mean absolute percentage error for the test section data is 0.97 and
2.45% respectively, which indicates the high accuracy of the final model
in approximating the desired outputs of the process. After modeling with
ANFIS-GWO, the effect of each input parameter on TSS of the joints was
quantitatively measured using Sobol sensitivity analysis method. The results
show that increasing in WC, WCY, EF, and CCY leads to an increase in TSS
of joints.

Nomenclature

ANFIS Adaptive neural-fuzzy inference system ANN Artificial neural network
ANOVA Analysis of variance CCY Cooling cycle (cycle)
EF Electrode force (N) GWO Gray wolf optimization algorithm
MAPE Mean absolute percentage error MAE Mean absolute error
RMSE Root mean square error RSW Spot welding
WC Welding current (KA) WCY Welding cycle (cycle)
J Fit function k Iteration number
kmax Maximum repetition OA Measured output value
OA Mean of measured output value OP Approximated output value
OP Mean of the approximated output value ρ∗ Finest solution
P Solutions vector V Updated solution vector
R First search vector constant R2 Coefficient of determination
r Constant in the search process S Coefficient of determination
s Elements of second search vector constant q Uniform distribution of a random number
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1. Introduction

RSW is used for joining metallic sheets via fusion of
spots at their interfaces. In RSW, two sheet metals
are pressed by EF. Then, a WC is applied to the elec-
trodes and therefore, a heat energy is generated be-
tween the sheet metals due to their electrical resistance.
The key parameter for integrity of the structures fab-
ricated by RSW especially in load-bearing conditions
is the mechanical strength of the joints. The RSW is
widely employed in manufacturing of sheet metal as-
sembles and stainless steels can be successfully joined
with this process. In the case of high-volume produc-
tions such as fabrication of car bodies, the RSW is
the best welding option due to its high capability in
automation for high speed and adaptive production.
Regardless of the mentioned advantages of RSW, in-
compatibility in the welding quality from weld to weld
is the big problem of RSW and this reduces the perfor-
mance of this welding method and increases the costs
of fabrication in the automation. Therefore, control of
parameters affecting the quality of welding has been
one of the important topics of research in the RSW
conducted in recent years. Muthu [1] optimized the
process parameters in the RSW of AISI 316 stainless
steel using Taguchi method. They used the analysis
of variance (ANOVA) to find the parameters that in-
fluenced the quality of the joints. They obtained that
the EF was the most significant parameter in control-
ling the joints strength. Tavakoli Hoseini et al. [2]
investigated the RSW of Inconel alloy 625 with Arti-
ficial Neural Network (ANN). They proved that the
WC had the greatest effect on the strength of joints
while the WCY had the least effect. In addition, they
concluded that the ANN was a useful tool for predic-
tion of TSS of RSW welded joints. Kumar et al. [3]
studied the effects of parameters on mechanical prop-
erties and micro-hardness of stainless steel 304 welded
joints. It was concluded that WCY had a significant
effect on the TSS. Huang et al. [4] applied an external
magnetic field to RSW and concluded that the weld
nugget became more regular with less defects. Fur-
thermore, with magnetic field, the TSS of Joints in-
creased. Chen et al. [5] designed a new electrode
to reduce the unfavorable interfacial fracture mode.
Their results showed that by the proposed electrode,
the range of WC that leads to the pullout failure mode
is doubled. Karthikeyan and Balasubramaian [6] stud-
ied the prediction of TSS load in RSW of aluminum al-
loy AA2024-T3 using RSM. They optimized the RSW
joints and compared the TSS load of welded sheets
with friction stir spot welding process. Zhao et al. [7]
optimized the RSW with entropy weight method. In
their method, the nugget diameter and TSS were con-
verted to a welding quality index. Their results showed
that the WC and WCY are the most important pa-
rameters affecting the weld quality, respectively. Vi-

gnesh et al. [8] investigated the dissimilar RSW of
AISI 316 and 2205 Duplex Stainless Steel (DSS) alloys
and predicted the effects of parameters on strength of
welded joints using experimental tests and numerical
simulations. Their results showed that the hardness of
heat affected zone for AISI 316 and 2205 DSS is lower
and higher compared to the base metal, respectively.
Moreover, the fractography results after tensile-shear
test proved that the failure occurs in the ductile mode.
Xia et al. [9], by calculating the percentage of ejected
metal from the melt during the expulsion, evaluated
the expulsion intensity in a RSW process. They con-
cluded that the rapid decreasing in signals of force and
displacement showed the amount of expelled metal in
RSW. Dhawale and Ronge [10] investigated the RSW
process of multi spot lap shear specimen. They studied
the effects of RSW parameters on the TSS of welded
joints. They employed the design of experiments based
on Taguchi method and Particle Swarm Optimization
(PSO) method to investigate the effect of each process
parameter on the strength of joints. Additionally, they
optimized the RSW parameters in order to maximize
the TSS of the joints. Atashparva and Hamedi [11]
investigated the small scale RSW of Nickel based su-
peralloys numerically using COMSOL package. They
verified the results of numerical simulations with ex-
perimental tests and studied the effects of RSW pa-
rameters on TSS and dimensions of weld nugget using
the DOE method. Their results proved that the nugget
diameter was increased with an increase in WCY and
WC and also a decrease in EF. The results of metal-
lography demonstrated the presence of widmanstatten
platelets at the weld zone. Ordoñez et al. [12] stud-
ied the micro-hardness, TSS and fatigue behavior of
RSW joints for DP980 steel sheets and concluded that
the stress concentration near the fusion zone leads to
a decrease in fatigue life of the welds. Wan et al. [13]
compared Back Propagation Neural Network (BPNN)
and Probabilistic Neural Network (PNN) for predict-
ing the weld quality in small scale RSW. The results
indicated that in estimation of failure load and quality
level classification, the BPNN and PNN methods were
more proper, respectively. Artificial Intelligence (AI)
is widely used to detect the relationship between in-
put and output parameters extracted from a dynamic
resistance signal compared to mathematical modeling.
Artificial Neural Network (ANN) is used to find the
correlation between input and output parameters and
is more practical than traditional techniques [14]. AN-
FIS is a mixture of fuzzy systems and artificial neural
network which utilize the learning ability of artificial
neural network to attain the fuzzy system parameters
[15].

In this paper, ANFIS was utilized to model the in-
fluence of main parameters in RSW of AISI 304 steel
sheets for predicting of TSS. After that, with the ob-
tained results from ANFIS, the sensitivity of TSS to
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variations in each of the input was investigated.

2. Material and Method

2.1. ANFIS

The ANFIS model is a combination of fuzzy infer-
ence system and artificial neural network. Merging the
fuzzy-set theory and neural network can present advan-
tages and prevail the disadvantages in both methods.
The ANFIS has the benefit of having both linguistic
and numerical knowledge. The ANFIS model also uti-
lized the neural network ability to identify patterns and
classify data. Moreover, other advantages of the AN-
FIS include its nonlinear ability, adaptation capabil-
ity, and rapid learning capacity. On the other hand,
the main limitation of ANFIS is to obtain the opti-
mal parameters in the model, which should utilize an
appropriate optimization algorithm. Fuzzy logic and
neural network are used in ANFIS. ANFIS consists of
two parts, the antecedent and the sequential, which are
interconnected through a set of if-then rules.

2.2. GWO

The GWO was inspired by Canadian Gray Wolf hunt-
ing actions by Mirjalili et al. [16]. It has been suggested
that they fall into the category of population-based op-
timization algorithms. Gray wolves have a leading so-
cial hierarchy, as revealed in Fig. 1. The pioneers of
the crowd are a male and a female known as alpha. The
next layer in the gray wolf hierarchy is beta. Beta ones
are secondary wolves that aid with alpha in decisions
or other group actions. Delta wolf must report to Al-
pha and Beta, but dominates Omega. Omega has the
lowest rank, which should always be obeyed by other
wolves.

Fig. 1. The hierarchy of gray wolfs.

The GWO algorithm, like the Particle Swarm Opti-
mization algorithm, starts from a random population.
In each iteration, the alpha, beta, and delta crowd re-
new their location according to their prey location.
This update also endures until the space among the
wolves and the prey is stopped or a satisfactory result
is achieved. In GWO, alpha wolves are the finest result.

Other crowd tracks along with its dominion. Hunting
action is done mainly by alpha and beta wolves and
henceforth by the delta followed by omega. Specifi-
cally, the GWO consists of the following steps:

Step one: The initial population of gray wolves is
randomly created. The created crowd is characterized
by the n-dimensional search space for operating M lo-
cations. To repeat, start with k = 0 initialization and
continue to kmax.

Pj(k) = [P 1
j (k) . . . P f

j (k) . . . Pn
j (k)]T , j ∈ {α, β, δ}

(1)

where k = 1, 2, . . . , kmax are the present itera-
tion numbers, kmax is the maximum repetition, and
Pα(k), Pβ(k), Pδ(k) is the solutions vector.

Step two: The performance of every single member
of the population is assessed based on the accuracy
of the approximation of the experimental data of the
present problem. Evaluating the performance of each
member leads to the value of the fit function (objec-
tive function) that is used for the GWO optimization
algorithm using: Pi(k) = ρ, i = 1, 2, . . . ,M .

Step three: The finest 3 solutions obtained so far,
we mean Pα(k), Pβ(k), Pδ(k), are identified by:

J(Pα(k)) = min
i=j,...,M

{J(Pi(k)), Pi(k) ∈ Dp}, (2)

J(Pβ(k)) = min
i=j,...,M

{J(Pi(k)), Pi(k) ∈ Dp/Pα(k)},
(3)

J(Pδ(k)) = min
i=j,...,M

{J(Pi(k)), Pi(k) ∈ Dp/Pα(k)

, Pβ(k)}, (4)

Eq. (5) has one situation for the outcome:

J(Pα(k)) < J(Pβ(k)) < J(Pδ(k)) (5)

Step four: Search vector constants are obtained uti-
lizing Eqs. (6) and (7):

Rj(k) = [r1j (k) . . . rfj (k) . . . rnj (k)]T (6)

Sj(k) = [s1j (k) . . . sfj (k) . . . snj (k)]T , j ∈ {α, β, δ},
(7)

in which:

rfj (k) = rf (k)(2qf − 1), (8)

sfj (k) = 2qf , j ∈ {α, β, δ}, (9)

where qf the uniform distribution of a random number
in the range 0 ≤ qf ≤ 1, f = 1 . . . n and the constant
rf (k) in the search process is reduced from 2 to 0.

rf (k) = 2[1 − (k − 1)/(kmax − 1)], f = 1 . . . n (10)

Step five: Search constants factors are permitted to
discover their new location by X equations.

V i
j (k) =

∣∣∣Sf
j (k)P f

j (k) − P f
i (k)

∣∣∣ , i = 1 . . .M,

j ∈ {α, β, δ} (11)
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By utilization of notation P j(k) for renewed Alpha,
Beta and Delta solutions:

P j(k) = [pj1(k) . . . pif (k) . . . xjm(k)]T , j ∈ {α, β, δ}
(12)

The components of these solutions are as follows:

P if (k) = pfj (k) − rfj (k)vij(k), f = 1 . . . n,

i = 1 . . .M, j ∈ {α, β, δ}. (13)

And the renewed solution vector Pi(k+ 1) is calcu-
lated by Equation X:

Pi(k + 1) = (Pα(k) + P β(k) + P δ(k))/3, i = 1 . . .M.
(14)

Step six: The updated solution Pi(k+ 1) is validated
by the objective function.
Step seven: The GWO is recurrent from step two till
the repetition k reaches the maximum value from the
initial value.
Step eight: In the last level, the algorithm stops and
the finest solution ever found is saved as:

ρ∗ = arg min
i=1...M

J(Pi(kmax)) (15)

In Fig. 2, the procedure of eight steps of GWO
algorithm is presented in a flowchart.

Fig. 2. The flowchart of GWO algorithm.

2.3. Sensitivity Analysis

Sensitivity analysis is a good tool for estimating of the
systems and extracting the effect of the input param-
eters on output for engineering problems which de-
scribes the output uncertainty of the model [17]. In

addition, the Sobol sensitivity analysis is a powerful
method that accurately, quantitatively, and by consid-
ering the simultaneous changes of all parameters pro-
vides the sensitivity of the output response to changes
in input factors in all intervals of the tests.

2.4. Resistance Spot Welding Process

For performing the RSW experiments, a 150 KVA
Messer Griesheim machine was used. During the en-
tire period of experiments, the water was circulating
in the electrodes in order to improve the heat transfer.
AISI 304 steel sheets with thickness = 1mm were used
in the RSW experiments. The sheets for RSW exper-
iments had dimensions of length = 150mm, width =
25mm and thickness = 1mm with overlaps of 30mm.
Some trial experiments were done for determining the
limits of process parameters. The lower limits of the
parameters were determined based on the minimum
values required to create a suitable joint with sufficient
strength, while the upper limits of the parameters were
determined based on the creation of a suitable joint
without weld expulsion and also excessive reduction of
the weld cross section. There are 31 designed experi-
ments based on RSM and Table 1.

Table 1
The limits of RSW parameters.

Parameter Limits
WC (KA) 3.6 6.4 9.2 12 14.8
WCY (cycle) 20 25 30 35 40
CCY (cycle) 0 12.5 25 37.5 50
EF (N) 200 800 1400 2000 2600

In Table 2, the performed experiments are pre-
sented.

In Fig. 3, a tensile-shear test with Kpruf instru-
ment is shown.

Fig. 3. Tensile-shear test of resistance spot welded
AISI 304 sheets.

Some of the joints after tensile-shear test are shown
in Fig. 4.
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Table 2
The designed RSW experiments based on RSM.

Sample
Welding

WCY CCY EF (N)
current (KA)

1 6.4 25 12.5 800

2 12.0 25 12.5 800

3 6.4 25 12.5 2000

4 12.0 25 12.5 2000

5 6.4 35 12.5 800

6 12.0 35 12.5 800

7 6.4 35 12.5 2000

8 12.0 35 12.5 2000

9 6.4 25 37.5 800

10 12.0 25 37.5 800

11 6.4 25 37.5 2000

12 12.0 25 37.5 2000

13 6.4 35 37.5 800

14 12.0 35 37.5 800

15 6.4 35 37.5 2000

16 12.0 35 37.5 2000

17 3.6 30 25 1400

18 14.8 30 25 1400

19 9.2 30 25 200

20 9.2 30 25 2600

21 9.2 20 25 1400

22 9.2 40 25 1400

23 9.2 30 0 1400

24 9.2 30 50 1400

25 9.2 30 25 1400

26 9.2 30 25 1400

27 9.2 30 25 1400

28 9.2 30 25 1400

29 9.2 30 25 1400

30 9.2 30 25 1400

31 9.2 30 25 1400

Fig. 4. Some of the RSW joints after tensile-shear test
with different failure modes.

As seen in Fig. 4, pullout and pullout with tearing
of the sheets modes were observed in the RSW joints.
It should be noted that, in order to ensure the repeata-
bility of the tests and increase the accuracy of the
measurements, all resistance spot welding tests were
repeated three times and the average of tensile-shear
strengths was considered as the tensile-shear strength
for each test. Furthermore, in order to eliminate ran-
dom errors, experiments were performed randomly.

2.5. Analysis of Variance (ANOVA)

In Table 3, the ANOVA results for TSS of the joints
such as effects of welding parameters and their inter-
actions are presented.

In the ANOVA analysis of engineering problems,
the parameters with p-values less than 0.05 are effec-
tive inputs [18]. Accordingly, all of process parameters
and some of their interactions influence the TSS. Con-
sidering R − sq = 93.30% and R − sq(adj) = 90.87%
for TSS shows the passable accuracy of the suggested
model.

Table 3
ANOVA for TSS of AISI 304 steel joints after RSW process.

Source DF Adj SS Adj MS F-value P-value

Model 8 58004167 7250521 38.31 0.000
Linear 4 27231667 6807917 35.97 0.000
WC (KA) 1 14260417 14260417 75.35 0.000
WCY 1 1083750 1083750 5.73 0.026
CCY 1 1353750 1353750 7.15 0.014
EF (N) 1 10533750 10533750 55.66 0.000
2-Way Interaction 4 30772500 7693125 40.65 0.000
WC (KA)*WCY 1 12425625 12425625 65.65 0.000
WC (KA)*EF (N) 1 1155625 1155625 6.11 0.022
WCY*EF (N) 1 15015625 15015625 79.34 0.000
CCY*EF (N) 1 2175625 2175625 11.50 0.003
Error 22 4163808 189264
Lack-of-Fit 16 4094665 255917 22.21 0.001
Pure Error 6 69143 11524
Total 30 62167974
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Fig. 5. The optimized membership function for WC
(in1), WCY (in2), CCY (in3) and EF (in4).

3. Results and Discussion

3.1. The Results of ANFIS-GWO System

In the present study, there are 31 empirical data for
ANFIS construction, involving four inputs and single
output (TSS). This data collection is arbitrarily sep-
arated into 2 subsets, 70% for training and 30% for
testing. Fig. 5 shows the optimized Gaussian member-
ship functions associated with WC, WCY, CCY and
EF, respectively.

Moreover, Fig. 6 shows the actual experimental
data and also predicted data attained by ANFIS for
both the training and testing phases. The accuracy of
the ANFIS predicted data is very high for the training
section as long as the ANFIS is trained based on the
data of this section. Next, Fig. 7 shows the value of the
TSS of welded joints for the actual and predicted data
in both the training and testing sections. As can be
seen in these diagrams, the actual experimental data
and ANFIS predicted data in the training phase coin-
cide quite well. The second part of the diagrams (test
section) also show that the ANFIS is able to predict
the data related to the test section. Moreover, Fig.
8 illustrates the error histogram for both training and
testing phases. It can be seen here that the error fre-
quency is greater at values closer to zero especially for
training part.

Fig. 6. Comparison between experimental and pre-
dicted data.

Fig. 7. Differences between experimental and test
data for prediction of TSS.
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Fig. 8. Error histogram for training and texting sections.

Moreover, Fig. 9 demonstrates the normalized er-
ror associated with the training and testing sections.
As can be seen, the amount of error in the test section
is greater than that of the training section.

Fig. 9. Normalized error for the training and testing
sections.

In addition, for quantitative analysis of the de-
veloped model, various statistical criteria such as
Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), coefficient of determination (R2 or
R-squared), and Mean Absolute Percentage Error
(MAPE) were used.

RMSE =

√√√√ 1

n

n∑

i=1

(OA −OP )
2

(16)

MAE =
1

n

n∑

i=1

|OA −OP | (17)

R2 =

[∑n
i=1

(
OA −OA

) (
OP −OP

)]2
[∑n

i=1

(
OA −OA

)] [∑n
i=1

(
OP −OP

)] (18)

MAPE =
100%

n

n∑

i=1

∣∣∣∣
OA −OP

OA

∣∣∣∣ (19)

where OA is the measured output value for the i-th
data, OP is the approximated output by the ANFIS
for the i-th sample, OA is the mean of measured data
and OP is the mean of the predicted data. To examine
the model accuracy, the above-mentioned criteria are
independently computed for training and test sections,
as shown in Table 4.

From the listed values in Table 4, it proves that the
ANFIS is a powerful tool for prediction of TSS. The
criteria RMSE and MAE are small, while they alone
are not appropriate for model evaluation. Next, R2 and
MAPE criteria that determine the amount of error rel-
ative to the number of data are used. The coefficient
of determination, R2, is so close to one, indicating the
high accuracy of the model. The percentage errors of
MAPE in the training section are 0.58%. Furthermore,
the MAPE in the test section are 2.54%. It can be seen
here that the calculated error in some cases (in the test
section) is relatively larger, because the test data have
not been used in model training and recognize as un-
seen data. However, the mean absolute error for the
test section is in reasonable range, which indicates high
accuracy of the obtained model. Thus, due to the ex-
istence of error in empirical data, this amount of error
in estimation is to be expected.

Table 4
RMSE, MAE, R2 and MAPE criteria for TSS of welded joints.

RMSE MAE R2 MAPE (%)

Train 85 51 0.99 0.58

Test 301 251 0.97 2.54

3.2. The Effects of RSW Input Parameters on
TSS Based on Sensitivity Analysis

Figs. 10 and 11 show the increase in TSS with in-
creasing the WC and WCY because of increase in the
heat generation in welding zone and accordingly the
penetration depth. In addition, the TSS of the joints
can improve with an increase in EF (Fig. 12). The rea-
son is that with increasing the EF, the indentation of
the electrodes in the sheets increases and excessively
increasing in the EF leads to decrease in the cross-
section of the welded joints. Therefore, the strength
of RSW joint decreases with an increase in the EF.
However, it is proved from Fig. 13 that increasing the
CCY leads to increase in TSS because of solidifying
the weld metal before liberation the welded specimens
and this leads to increase in the joint strength.
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Fig. 10. Effect of WC on TSS of the joints.

Fig. 11. Effect of WCY on TSS of the joints.

Fig. 12. Effect of EF on TSS of the joints.

Fig. 14 shows the result of Sobol sensitivity anal-
ysis for the TSS obtained by Simlab software. It is
seen from Fig. 14, the WCY, WC, EF, and CCY have
the greatest effect on the strength of the joints, respec-
tively.

Fig. 13. Effect of CCY on TSS of the joints.

Fig. 14. The diagram of effectiveness of input param-
eters on TSS of RSW joints.

4. Conclusions

RSW process of AISI 304 steel sheets was experimen-
tally studied by investigation of the effects RSW pa-
rameters on the strength of the joints using ANFIS
(based on GWO) and Sobol sensitivity method. Fol-
lowing results were obtained:

1. It was concluded that the TSS increased with in-
creasing the WC and WCY because of the in-
crease in the heat generation of welding zone and
accordingly the penetration depth. In addition,
the TSS of the joints can improve with an in-
crease in EF. The reason is that with increas-
ing the EF, the indentation of the electrodes in
the sheets increased and excessively increasing in
the EF led to decrease in the cross-section of the
welded joints. However, it was proved that in-
creasing the CCY led to increase in TSS because
of solidifying the weld metal before liberation the
welded specimens.

2. The ANFIS results showed that the employed
network is a powerful tool for prediction of TSS
based on variable input variables.
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3. The results of Sobol sensitivity analysis showed
that the WCY, WC, EF, and CCY have the
greatest effect on the strength of the joints, re-
spectively.
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