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Abstract

Few analytical approaches have been proposed so far for solving Fluid-
Structure Interaction (FSI) problems in the literature. In fact, FSI is generally
so complicated that its analytical solution remains almost unavailable.
Inspired by this fact, here an analytical methodology is presented for modeling
steady-state fluid-structure interaction problems in axisymmetric domains.
For this purpose, the Navier-Stokes equations for the flow of the incompressible
viscous fluid, and the linear elasticity equations for the deformation of the solid
structure are expressed in axisymmetric coordinates. Appropriate boundary
conditions are also employed that are capable of coupling the fluid and solid
domains by imposing kinematic and dynamic constraints on the fluid-structure
interaction interface. The set of fluid and structure equations are solved
by MATLAB symbolic toolbox. The accuracy of the presented analytical
approach is verified in two different ways. First, by specializing the results for
the simple case of a thick cylindrical pressure vessel, second, by comparing the
analytical results for flow through a nozzle with numerical results obtained by
ANSYS/CFX simulation. Variation of the stress components is obtained in
the nozzle wall. The results of the analytical approach are in good agreement
with those of the numerical modeling. The proposed methodology can be
used for fast yet efficient solution of fluid-structure interaction problems in
axisymmetric configuration.

Nomenclature

b Volume force per unit mass, N/kg E Modulus of elasticity, N/m2

I Unit tensor p Fluid pressure, N/m2

r Radial coordinate, m R Radius of fluid domain at FSI interface
t Time, s u Solid radial displacement, m
v Fluid velocity, m/s w Solid axial displacement, m
z Axial coordinate, m
Greek symbols
ε Strain tensor µ Fluid viscosity, Pa.s
ν Poissons ratio ρ Density, kg/m3

σ Cauchy stress tensor, MPa
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Subscript
f Fluid i In
o Out r Radial
s Solid z Axial
θ Angular

1. Introduction

Fluid-Structure Interaction (FSI) which deals with the
interaction of some movable or deformable structures
with an internal or surrounding fluid flow is encoun-
tered in many branches of science and engineering.
This phenomenon plays an important role in many
engineering problems including the fluttering of air-
craft wings [1], deflection of wind-turbine blades [2],
inflation of automobile air-bags [3], dynamics of space-
craft parachutes [4], motion of ships [5], performance
of pumps and micropumps [6], blood flow and arterial
dynamics in healthy and diseased (stenotic or aneurys-
mal) arteries [7, 8], and lubrication [9] studies.

Fluid-structure interaction has been a hot research
topic in recent years. Research on this topic is mainly
performed by three types of techniques: experimental,
analytical, and numerical. The experimental approach
requires the simultaneous measuring of the flow prop-
erties and the structural change which is often chal-
lenging. Furthermore, experiments are expensive, time
consuming, and usually do not allow much flexibility
in parameter variation. Consequently, this approach
has been mostly used in combination with, or as a ver-
ification tool for analytical or numerical approaches,
e.g. in [10–12]. On the other hand, with the increasing
capacity of numerical computation facilities and the
new mathematical algorithms, the numerical approach
has received the maximum attention in the related lit-
erature, and numerical techniques such as the finite
element method [13, 14], the finite volume method
[15], the boundary element method [16, 17], the im-
mersed boundary method [18], the extended finite ele-
ment method [19], the lattice Boltzmann method [20],
the smooth particle hydrodynamic method [21] and
their combination [22–26] have been used extensively
to study different FSI problems.

While numerical simulation is considered to be
the most effective approach for solving many practical
problems, the most accurate solutions is obtained by
using the analytical techniques. Analytical techniques
also provide a better understanding of the physical be-
havior of the system and offer faster computations [27].
Unfortunately, FSI is so complicated that its analyti-
cal solution remains almost unavailable. The complex-
ity lies not only in the highly nonlinear response of
both the fluid and structure, but also in the behavior
of the coupled FSI system [28, 29]. As a consequence,
only few analytical solutions are presented in the lit-
erature for FSI problems, most of which are limited to

extremely simplified cases.
Xu and Wellens in [30] developed an analytical

model to explore the nonlinear fluid-structure interac-
tion between large-scale polymer offshore floating pho-
tovoltaics and waves. The floating structure was mod-
eled as a nonlinear Euler Bernoulli-von Kármán beam
coupling with water beneath. A multi-time-scale per-
turbation method was employed leading to hierarchic
partial differential equations by introducing the wave
steepness squared as the perturbation. The analyti-
cal solution of the proposed nonlinear FSI model was
obtained up to the second order. Soni et al. in [31]
used an analytical approach to study the effect of fluid-
structure interaction on vibration and deflection of gen-
erally orthotropic submerged micro-plate with crack
under thermal environment. The proposed analytical
model was based on Kirchhoff’s classical thin plate the-
ory and the size effect was introduced using the mod-
ified couple stress theory. The fluid forces associated
with its inertial effects were added in the governing
differential equation to incorporate the fluid–structure
interaction effect. Fritsche et al. in [32] proposed an
analytical model to investigate the fluid structure inter-
action of an elastic beam in a water channel. For this
purpose, the beam deformation was estimated based on
the analytical equations from structural mechanics and
an assumed stagnation pressure on the beam surface.
Additionally, the drag coefficient from experimental
data of the literature was used to estimate the force on
and the bending of the beam. Jain et al. in [33] pre-
sented an analytical solution for vibration analysis of
orthotropic and FGM submerged cylindrical shell con-
taining a surface crack of variable angular orientation
with consideration of fluid-structure interaction. The
governing equations in terms of transverse deflection
of cracked-submerged shell were derived using classical
shell theory. The fluid forces associated with its inertial
effects were added in the governing differential equation
to incorporate the fluid-structure interaction effect. Yu
and Whittaker in [34] reviewed the analytical studies
on seismic fluid-structure interaction of base-supported
cylindrical tanks. They calculated and compared FSI
responses for a range of tank dimensions using the an-
alytical solutions from different studies. The responses
were normalized to be unitless to be used for tanks
with different dimensions and mechanical properties,
and subjected to different input motions. Zhang in
[35] proposed a simple idea to include fluid–structure
interaction (FSI) in classic rectilinear flow problems.
Dynamic FSI problems amenable to analytical meth-
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ods were obtained by allowing a solid boundary to be-
have as a rigid body, instead of holding it at constant
motions. Four examples including Stokes’s first prob-
lem, Couette flow, rotating disk, and rotating sphere
were analytically solved by Laplace transform.

While several analytical solutions have been pre-
sented in the literature to solve the fluid flow and the
solid deformation in axisymmetric problems, based on
the above literature review and to the best knowledge
of the author, such analytical solutions do not exist
for the coupled problem of the fluid-structure interac-
tion. Therefore, developing an analytical model that
can analytically solve the axisymmetric fluid-structure
interaction problems with low computational cost and
reasonable accuracy is the main contribution and nov-
elty of the current study. Here, it is aimed to develop
a simple yet effective methodology for modeling fluid-
structure interaction in axisymmetric domains. The
fluid flow in circular pipes, tubes, nozzles, and healthy
or diseased arteries are some examples of axisymmet-
ric FSI problems. In this methodology, the steady flow
of the incompressible viscous fluid is given by Navier-
Stokes equations while the deformation of the solid
structure is described by the equations of linear elas-
ticity. The details of the mathematical formulation is
described in section 2.

2. The Mathematical Formulation

The following assumptions are made for developing the
problem formulation in the analytical approach:

• The problem domain is axisymmetric with re-
spect to the z axis as shown in Fig. 1. The
radial and axial components of different variables
are specified by r and z subscripts, respectively.

• The problem is time independent.

• The fluid is Newtonian and the solid is isotropic
elastic.

• The solid deformation is small such that one-
way coupled fluid-structure interaction analysis
is valid.

It should be noted that all the above assumptions,
except the last one, are also employed in the numerical
simulations.

Fig. 1. The problem geometry.

2.1. The Fluid Domain

The Navier-Stokes equations, which consist of equa-
tions for the mass continuity and the conservation of
the momentum, govern the flow of the viscous incom-
pressible fluid. The time-dependent form of these equa-
tions reads [28, 29]:

∇ · v = 0 (1)

ρf

(
∂v

∂t
+ (v.∇)v

)
− µ∇2v + ∇p = ρfbf (2)

Here, t is time, ρf is the fluid density, v and p
represent the fluid velocity and pressure fields, µ de-
notes the fluid viscosity, and bf is the volume force
per unit mass of the fluid. When the problem is not
time-dependent and volume forces are absent bf = 0,
the following steady form of the Navier-Stokes equa-
tions can be used [28, 29]:

∇ · v = 0 (3)

∇p = µ∇2v − ρf (v.∇)v (4)

In axisymmetric flows, one can write Eqs. (3) and
(4) in terms of radial (r) and axial (z) coordinates as:

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0 (5)

∂p

∂r
= µ

(
1

r

∂

∂r

(
r
∂vr
∂r

)
− vr
r2

+
∂2vr
∂z2

)

− ρf

(
vr
∂vr
∂r

+ vz
∂vr
∂z

)
(6)

∂p

∂z
= µ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)

− ρf

(
vr
∂vz
∂r

+ vz
∂vz
∂z

)
(7)

In order to solve Navier-Stokes equations, appropri-
ate boundary conditions are required. For this purpose,
the reference pressure is prescribed to have zero value
at the outflow [6, 36]:

p = 0 at z = 0 (8)

The following axial velocity (vz) profile is also pre-
scribed at each point of the fluid domain:

vz = vmax(z)

(
1 −

(
r

R(z)

)n)
(9)

In this relation, R(z) is the radius of the fluid do-
main at the FSI interface, and n = 20 gives the best fit
to the experimental data presented in [37] for internal
flow through an axisymmetric constriction. Further-
more, this velocity profile satisfies the no-slip bound-
ary condition (kinematic constraint) at the solid-fluid
interface, i.e. [38]:

vz = 0 at r = R(z) (10)
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The maximum velocity in each point, vmax(z), can
be found in terms of the flow rate, Q, by following
relation:

Q =

∫ R

0

2πrν2 dr

=

∫ R

0

2πrvmax(z)

(
1 −

(
r

R(z)

)n)
dr (11)

Evaluating this integral gives:

vmax(z) =
n+ 2

n

Q

πR2
(12)

Substituting for vz from Eq. (9) back into Eq. (5)
and integrating with respect to r gives vr. The inte-
gration constant is determined by applying the no-slip
boundary condition at FSI interface:

vr = 0 at r = R(z) (13)

After determination of vz and vr, Eq. (6) can be in-
tegrated to obtain the fluid pressure p. The integration
constant is then determined by replacing the relation
obtained for p in Eq. (??) and applying the outflow
boundary condition given in Eq. (8).

2.2. The Solid Domain

The differential equation of equilibrium for a de-
formable solid is given by [28, 29]:

∇ · σ + ρsbs = 0 (14)

Here, σ is the Cauchy stress tensor, ρs is the solid
density and bs is the volume force per unit mass of
solid. For axisymmetric problems, in the absence of
volume forces, the equilibrium equations reduce to [39]:

∂σr
∂r

+
σr − σθ

r
= 0 (15)

∂τrz
∂r

+
∂σz
∂z

+
τrz
r

= 0 (16)

The constitutive stress-strain relationship for an
isotropic elastic solid is expressed as [39]:

σ =
E

1 + ν
ε +

νE

(1 + ν)(1 − 2ν)
εkkI (17)

where E is the elasticity modulus, ν is the Poisson’s ra-
tio, ε is the infinitesimal strain tensor, εkk is the first
scalar invariant of ε and I denotes the unit tensor. For
axisymmetric analysis, this equation gives:

σr =
E

(1 + ν)

[
εr +

ν

1 − 2ν
(εr + εθ + εz)

]
(18)

σθ =
E

(1 + ν)

[
εθ +

ν

1 − 2ν
(εr + εθ + εz)

]
(19)

σz =
E

(1 + ν)

[
εz +

ν

1 − 2ν
(εr + εθ + εz)

]
(20)

τrz =
E

(1 + ν)
εrz (21)

Strain components are also given by [39]:

εr =
∂u

∂r
, εθ =

u

r
,

εz =
∂w

∂z
, εrz =

1

2

(
∂u

∂z
+
∂w

∂r

) (22)

where u and w are displacement components in the ra-
dial and axial directions. Substituting from Eq. (22)
back into Eqs. (18-21) yields:

σr =
E

(1 + ν)

[
∂u

∂r
+

ν

1 − 2ν

(
∂u

∂r
+
u

r
+
∂w

∂z

)]
(23)

σθ =
E

(1 + ν)

[
u

r
+

ν

1 − 2ν

(
∂u

∂r
+
u

r
+
∂w

∂z

)]
(24)

σz =
E

(1 + ν)

[
∂w

∂z
+

ν

1 − 2ν

(
∂u

∂r
+
u

r
+
∂w

∂z

)]
(25)

τrz =
E

2(1 + ν)

(
∂u

∂z
+
∂w

∂r

)
(26)

Replacing from these relations into equilibrium
equations, Eqs. (15) and (16), gives the system of par-
tial differential equations governing the deformation of
the solid domain:

(1 − ν)

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)
+ ν

∂2w

∂z∂r
= 0

∂2u

∂r∂z
+

1

r

∂u

∂z
+ (1 − 2ν)

(
∂2w

∂r2
+

1

r

∂w

∂r

)
(27)

+ (2 − 2ν)
∂2w

∂z2
= 0

The following set of boundary conditions is em-
ployed for solving these equations:

σr = p at r = R(z) (28)

σr = 0 at r = R(z) + t (29)

τrz = −µ∂v(r, z)

∂z
at r = R(z) (30)

τrz = 0 at r = R(z) + t (31)

σz = 0 for a tube with free ends (32)

εz = 0 for a tube with free ends (33)

In these relations, t is the solid thickness. The effect
of the fluid pressure normal load and viscous tangen-
tial load on the solid structure (dynamic constraint)
is accounted for by imposing the boundary conditions
given in Eqs. (30) and (32), respectively. Finally, the
set of equations presented above for the fluid and struc-
ture domains was solved by means of Matlab symbolic
toolbox.

One of the most important advantages of the above
methodology is that once the associated Matlab code
is developed, it can be used to solve different FSI
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problems in axisymmetric domain just by adjusting
the FSI interface function R(z) and domain bound-
ary conditions. While in numerical simulations, solv-
ing a new problem requires to define the geometrical
model and mesh its domain which is time-consuming
and labor-intensive. However, as mentioned earlier, the
above-developed analytical approach is a one-way cou-
pled fluid-structure interaction analysis, since it only
accounts for the loads applied to the solid structure
from the fluid part in the FSI interface. The effect of
structure deformation on moving the fluid interface is
not captured in this methodology. Consequently, this
methodology is best-suited for analysis of FSI systems
in which deformation of the solid structure is small.
Many real-world problems like stress analysis in fluid
transporting tubes are among such FSI systems.

2.3. Results and Discussions

2.4. Cylindrical Pressure Vessel

In thick cylindrical pressure vessels, it is assumed that
u ≡ u(r). Moreover, the fluid pressure is constant, i.e.
p = cte, and it can be assumed that µ = 0 since the
fluid is stationary. Substituting these relations back
into Eqs. (27-30) gives:

d2u

dr2
+

1

r

du

dr
− u

r2
= 0

σr = p at r = R(z) (34)

σr = 0 at r = R(z) + t

Solving this differential equation and applying the
boundary conditions gives:

u =
1 − ν

E (R2
o −R2

i )

(
R2

i p

r
− R2

iR
2
op

2
r

)
(35)

This relation that can be found in many related
texts such as [40] proves the capability of the derived
methodology in this simple example.

2.5. Flow Through a Nozzle

The relationship between the wall deformation and the
fluid dynamics in nozzles is important for medical and
engineering applications [41]. Here, the relations de-
veloped in section 2 are employed to obtain the fluid
and solid responses in flow through a nozzle with a
curved profile. The nozzle geometry is given in Fig.
2. The fluid material is water with ρf = 1000 kg/m3

and µ = 8.90 × 10−4Pa.s, while the solid is made of
Aluminum with E = 70GPa and ν = 0.33.

In this figure, the nozzle inlet and outlet radii are
R1 = 0.15m, R2 = 0.05m and its length and wall
thickness are L = 0.386m and t = 0.01m, respec-
tively. The nozzle radius R(z) is given by: R(z) =
0.7038z2 + 0.0126z + 0.05. Fig. 3 defines lines 1 to 5,

which are used later in this section for presentation of
results.

Fig. 2. The nozzle geometry.

Fig. 3. Definition of lines 1 to 5 for presentation of
results.

The results are compared to results of numerical
simulations performed by ANSYS/CFX software. For
numerical analysis, the mesh sensitivity test is per-
formed for hoop stress in the nozzle wall at z = −0.3m
along line 5. The results of this test are presented in
Fig. 4. After performing the mesh sensitivity, 14400
FLUID141 (2D 4-Node quadrilateral fluid) elements
and 1260 PLANE182 (2D 4-Node quadrilateral struc-
tural solid) elements were selected to mesh fluid and
solid domains, respectively.

Fig. 4. Results of the mesh sensitivity analysis.

A coarse version of the finite element mesh is pre-
sented in Fig. 5. The boundary conditions on different
boundaries of Fig. 5 are as follows: on boundary 1 an
inlet velocity is prescribed, on boundary 2 the outlet

Journal of Stress Analysis/ Vol. 6, No. 2, Autumn � Winter 2021-22 111



pressure is specified, on boundary 3 the axisymmetric
conditions are applied, on boundary 4 the FSI inter-
face conditions are enforced, and finally on boundaries
5 and 6 the displacement of the solid domain is fixed.
The initial conditions of v = 0m/s and p = 0Pa are
prescribed everywhere in the fluid domain.

Analytical and numerical solutions for flow axial
and radial velocities along different lines of Fig. 3 are
compared in Figs. 6 and 7. Note that the radial veloc-
ity is zero along line 1. Fig. 5. A coarse version of the finite element mesh.

Fig. 6. The flow axial velocity variation along a) line 1, b) line 2, and c) line 3.

Fig. 7. The flow radial velocity variation along a) line 2, b) line 3.
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The fluid pressure distribution in axial direction is
also compared for analytical and numerical approaches
in Fig. 8.

Fig. 8. The flow pressure variation along line 4.

According to Figs. 6 to 8, analytical and numer-
ical data are in good agreement, especially near the
nozzle centerline, i.e. r = 0. The difference between
analytical and numerical results near the nozzle wall,
i.e. r = R(z), is mainly due to the axial velocity pro-
file assumed in Eq. (9) for the analytical approach.
While this velocity profile can accurately predict the
maximum flow velocity that occurs near the center-
line, it gives a thicker boundary layer near the nozzle
wall. Consequently, the analytically calculated veloc-
ity is higher in these regions to give equal flow rate
with the numerical method. On the other hand, the
analytical pressure is lower in these regions due to the
Bernoulli principle.

Contours of the flow velocity and pressure distribu-
tion in the nozzle obtained by the numerical simulation
are given in Fig. 9.

The results of analytical and numerical approaches
for different stress components along line 5 are com-
pared in Fig. 10. The contour of the hoop stress dis-
tribution in the nozzle wall is also given in Fig. 11.

Here, it is worth mentioning that all analyses were
performed on an ASUS laptop model N552V with Intel-
Core i7-6700HQ CPU and 12GB of RAM. The con-
struction of the numerical model for the nozzle prob-
lem in ANSYS took about 4 hours to be completed by
author, while its solution time by ANSYS was about 8
minutes. However, the modification of the Matlab code
for analytical modeling of the nozzle problem took less
than 10 minutes to be performed by author, while its
solution time by Matlab was less than 1 minute. This
comparison clearly shows that it takes much less time
and labor to prepare the analytical model and further-
more, its runtime is smaller than that of the numerical
model. Moreover, comparisons made in Figs. 6, 7, 8,
and 10 between the results of analytical and numeri-
cal models demonstrate the capability of the analytical
model to solve the FSI problems with minimal error.
However, despite its advantages, the proposed analyti-
cal method has some limits. The most important limits
are:

• The method can be used to solve FSI problems
only when the problem domain is axisymmetric,

• It is not applicable to time-dependent problems,

• It applies a one-way coupled fluid-structure inter-
action scheme, so its accuracy is reasonable only
if the solid deformation is small.

Fig. 9. Contours of the flow a) axial velocity, b) radial velocity, and c) pressure distribution.
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Fig. 10. The variation of a) radial stress, b) hoop stress, c) axial stress, and d) shear stress along line 5 on the
nozzle wall.

Fig. 11. Contour of the hoop stress distribution in
the nozzle wall.

3. Conclusions

In this paper, an analytical approach was proposed
to model Fluid-structure interaction problems in ax-
isymmetric domains. In this approach, the flow of
the incompressible viscous fluid is described by steady
Navier-Stokes equations, while the stationary momen-
tum equations govern the solid structure, which is as-

sumed to have linear elastic behavior. The kinematic
constraint, i.e. the no-slip condition for fluid flow, and
the dynamic constraint, i.e. the fluid pressure normal
force and viscous tangential force on the structure, are
imposed on the fluid-structure interface by introduc-
ing appropriate boundary conditions. The validity of
this approach was proved in two different ways. In
the first way, the analytical equations were specialized
for the simple case of thick cylindrical vessels. In the
second way, the presented approach was further veri-
fied by comparing its results for flow through a nozzle
with results of the numerical simulation of the problem.
The developed approach can be used for fast solution
of fluid-structure interaction problems in axisymmetric
configuration with reasonable accuracy.
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