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Abstract

The properties of symmetrical structures can cause the optimal analysis of
these types of structures to have greater ease, speed, and accuracy. It also
saves space for storing large-scale matrices. Reducing these computational
costs is very useful in structural problems that require frequent analysis of
the specific structure. One of the problems that need repeated structural
analysis is Reliability-Based Design Optimization (RBDO) of structures
utilizing meta-heuristic algorithms. This study presents an efficient approach
to the optimal analysis of symmetric skeletal structures. With a system-
atic and programmable procedure, this approach extracts the submatrices
whose dimensions are half or less than half of the main structure’s stiffness
matrix. Then, the inverse of the stiffness matrix can be determined by
calculating the inverse of submatrices whose dimensions are half or less
than half the dimensions of the main structure’s stiffness matrix. Two
symmetric benchmark structures with general loading were investigated
to assess the proposed approach to solving the RBDO problem. The pro-
posed approach reduces the dimensions of matrices that must be inverted,
and the computational time for solving the RBDO problem using Enhanced
Vibrating Particle System (EVPS) algorithms, compared to the direct method.

Nomenclature

RBDO Reliability-Based Design Optimization EVPS Enhanced Vibrating Particle System
MCS Monte Carlo Simulation K Stiffness matrix of the structure
F Vector of external loads U Vector of nodal displacements
E Young’s modulus I Moment of inertia
A Cross-sectional area Fy Yield stress of material
γ Weight per volume of material R Maximum drift index
Rl Inter-story drift index d Vector of deterministic design variables
β Reliability index Ps Probability of safety
T Transformation matrix g i i-th deterministic constraint
A, B, X
and Q

Submatrices of the stiffness matrix f Objective function (typically the struc-
ture’s weight)
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C1 and
C2

Intermediate matrices for inverse calcu-
lation

ϕb, ϕc Resistance reduction factors for bend-
ing and axial strength

ḡj Limit state function for the j-th proba-
bilistic constraint

µX , µP Mean vectors of random variables (X)
and random parameters (P)

Mn and
Pn

Nominal bending and axial strength Mu and
Pu

Required bending and axial strength

S1, S2 Groups of symmetric structures (S1:
axis intersects members; S2: axis
passes through nodes)

σj , σa Stress of the j-th member and allowable
stress

D1, D2, D11, D22, D33, D12, D13, D23 Submatrices for inverse calculation

1. Introduction

Numerical approaches, such as finite element analysis,
are used to solve structural engineering problems, re-
sulting in the construction of large stiffness matrices.
For the static analysis of these structures, the inverse of
large-scale matrices must be calculated. In some struc-
tural problems, approaches for reducing computational
volume, problem size, and data volume for computer
memory can be provided. It will decrease numerical
errors and, as a result, increase calculating speed and
convenience without reducing accuracy. Symmetrical
structures, which have many applications in engineer-
ing, are one of these problems [1-7]. For the analy-
sis of such structures, symmetry gives more informa-
tion in addition to the basic information, which will
be very beneficial. This additional information can
be used for faster analysis and lower computational
costs and errors. Several methods for optimal analy-
sis of symmetric structures have been proposed by re-
searchers. In these methods, using group theory, graph
theory, and linear algebra, mainly the eigenvalue prob-
lems of symmetric structures are solved [8]. Group the-
ory is used for block diagonalization of matrices [9-11].
In graph-theoretical methods, graph models of planar
and spatial structures are divided into appropriate sub-
structures. A suitable algorithm for applying bound-
ary conditions and forming desirable substructures to
solve particular problems is presented [12,13]. Many
approaches of the last two decades are based on lin-
ear algebra with block-diagonal matrices [14-16]. In
these approaches, canonical forms are used for the ef-
ficient calculation of matrix eigenvalues [17-19]. These
approaches have been applied to problems such as com-
binatorial optimization, free and forced vibration of
structures, determining critical loads of frames, or-
dering and partitioning of structures, the vibration of
the mass-spring system, and eigenvalue calculation of
the Laplacian matrix of a symmetric graph [20,19,21-
23]. Matrix decomposition and block diagonalization
of these matrices are commonly used to provide effi-
cient eigensolutions in structural mechanics problems
[24,25]. Previous studies and reviews on this issue are
about the problem of determining the critical loads of
frames, free vibration of structures, the partitioning of
finite element models, the optimal order and vibration

of systems consisting of mass and spring, and the cal-
culation of the eigenvalues of the Laplacian matrix of
graphs with different forms of symmetry. Most of these
studies are concerned with computing the eigensolu-
tion of regular structures and graphs. Fewer studies
have been carried out on the static analysis of sym-
metric structures. The matrix linear algebra approach
is used for linear static analysis, and the graph theory
approach is not used for such problems.

The efficiency of optimal structural analysis meth-
ods is more applicable when the structure is large-scale
and has very high degrees of freedom and also when a
significant number of structural analyses must be re-
peated. Solving nonlinear problems is one of the prob-
lems that requires frequent structural analysis. In fact,
in solving non-linear problems, usually with different
assumptions and methods, the problem becomes sev-
eral repeated linear problems. After converting the
nonlinear problem into several repeated linear prob-
lems, the efficient proposed method presented in this
article can be used to solve them. The reliability-based
design optimization (RBDO) problems integrated with
meta-heuristic algorithms are one of the problems that
require repeated structural analysis. There are several
methods to solve RBDO problems[26]. These methods
include two-level [27], decoupled [28], and mono-level
[29] methods. The two-level method is the most suit-
able for complex and nonlinear problems among these
methods. Other advantages of this method include no
dependence on the design point and no need for limit
state function derivatives [30]. This method can be
used to solve any RBDO problem with any constraint
because of its generality. The Monte Carlo simula-
tion (MCS) method, which is one of the most gen-
eral, widely used, and accurate methods for evaluat-
ing probabilistic constraints, can also be utilized in the
inner loop [31-33]. A given structure must be ana-
lyzed several times in order to solve the RBDO prob-
lem, utilizing the double-loop method and the meta-
heuristic algorithm. The high number of iterations,
population size, the number of independent runs of
the meta-heuristic algorithm in the outer loop, and
the high number of MCS sample points in the stage
of assessing the structure’s reliability in the inner loop
necessitate these iterative analyses.
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This study provides an approach for static analysis
on symmetric skeletal structures, reducing computa-
tional time and memory space. The proposed approach
calculates the inverse of the main structure’s stiffness
matrix by calculating the inverse of sub-matrices ob-
tained from the halved model of the structure. The ef-
ficiency of the proposed approach is evaluated by com-
paring the analysis time of symmetrical frames with
different numbers of bays and stories using two dif-
ferent methods (the direct method and the proposed
method). Furthermore, RBDO for two symmetric
skeletal structures (a 3-bay 15-story frame and a 200-
bar planar truss) is investigated. In these problems, the
MCS approach is employed for reliability assessment,
and an enhanced vibrating particle system (EVPS) al-
gorithm is used for optimization. The results indicate
that structural analysis using the proposed approach
reduces the computational time and the data volume
stored in the memory while maintaining the accuracy
of the answers when compared to the direct method.
Additionally, reducing the time required for struc-
tural analysis, which is a time-consuming procedure in
solving the RBDO problem using meta-heuristic algo-
rithms, leads to a significant reduction in calculations
of the optimal design.

Following is an overview of the rest of the research.
In Section 2, theorems for the inverse calculation of
matrices of specific forms are presented. Section 3
presents the step-by-step procedure for optimal anal-
ysis of symmetric structures. RBDO formulation and
EVPS optimization algorithm are briefly described in
section 4. Section 5 provides computational time for
static analysis of frame structures with different bays
and stories. Two benchmark symmetric skeletal struc-
tures are shown in Section 6, including a 3-bay 15-story
frame and a 200-bar planar truss. The conclusions are
presented in the final section.

2. The Theorems for Inverse Calculation
of Matrices with the Particular Form

Two specific forms of the matrix (referred to as K1 and
K2) are defined in this section, and their inverse cal-

culations are proved using Theorems 1 and 2 [17]. The
inverse of these two particular forms is used for the
inverse calculation of stiffness matrices of symmetric
structures in Section 3.

2.1. Theorem 1

Assume that the matrix K1 is in the form of Eq. (1).

[K1] =

[
[A]n×n [B]n×n

[B]n×n [A]n×n

]
2n×2n

(1)

where n is the dimension of the matrices A and B.
When the matrices A+B and A-B are invertible (non-
singular matrices), the inverse of the matrix K1 is ob-
tained from Eq. (2).

[K1]
−1

=

[
[D1]n×n [D2]n×n

[D2]n×n [D1]n×n

]
2n×2n

(2)

To calculate the matrices D1 and D2, first, the ma-
trices C1 and C2 are obtained from Eqs. (3) and (4),
respectively. Then, the matrices D1 and D2 are ob-
tained according to Eqs. (5) and (6), in turn.

C1 = (A−B)−1 (3)

C2 = (A+B)−1 (4)

D1 = (
1

2
)(C2 + C1) (5)

D2 = (
1

2
)(C2 − C1) (6)

Proof of Theorem 1: Because the inverse of a matrix
is unique, it is sufficient to prove Eqs. (7) and (8) in
order to prove this theorem.

[K1] [K1]
−1

= [I] (7)

[K1]
−1

[K1] = [I] (8)

According to Eq. (9), by replacement, algebraic
operations, and simplification, Eq. (7) can be proved.

[K1] [K1]
−1

=

[
A B
B A

] [
D1 D2

D2 D1

]
=

[
AD1 +BD2 AD2 +BD1

BD1 +AD2 BD2 +AD1

]
= (

1

2
)

[
A(C2 + C1) +B(C2 − C1) A(C2 − C1) +B(C2 + C1)
B(C2 + C1) +A(C2 − C1) B(C2 − C1) +A(C2 + C1)

]
= (

1

2
)

[
AC2 +AC1 +BC2 −BC1 AC2 −AC1 +BC2 +BC1

BC2 +BC1 +AC2 −AC1 BC2 −BC1 +AC2 +AC1

]
(9)

= (
1

2
)

[
C1(A−B) + C2(A+B) −C1(A−B) + C2(A+B)
−C1(A−B) + C2(A+B) C1(A−B) + C2(A+B)

]
= (

1

2
)

[
(A−B)−1(A−B) + (A+B)−1(A+B) −(A−B)−1(A−B) + (A+B)−1(A+B)
−(A−B)−1(A−B) + (A+B)−1(A+B) (A−B)−1(A−B) + (A+B)−1(A+B)

]
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= (
1

2
)

[
I + I −I + I
−I + I I + I

]
= (

1

2
)

[
2I 0
0 2I

]
=

[
I 0
0 I

]
= [I]

Also, Eq. (8) is proved by performing a similar ma-
trix operation as shown in Eq. (9) and summarized in
Eq. (10).

[K1]
−1

[K1] =

[
D1 D2

D2 D1

] [
A B
B A

]
=

[
D1A+D2B D1B +D2A
D2A+D1B D2B +D1A

]
=

[
I 0
0 I

]
= [I]

(10)

Eqs. (2) to (6) demonstrate that for inverse cal-
culation of a matrix in the form K1 with dimensions
2n×2n, it is sufficient that two matrices (the matrices
C1 and C2) with dimensions n×n, which are half the
dimensions of the main matrix, are inverted.

2.2. Theorem 2

Suppose that the matrix K2 is in the form of Eq. (11).

[K2] =

 [A]n×n [0]n×n [Q]n×k

[0]n×n [A]n×n [Q′]n×k

[Q]
T
k×n [Q′]

T
k×n [X]k×k


(2n+k)×(2n+k)

(11)

where n and k are the dimensions of the matrices A
and X, respectively. Provided that the matrices A and
X−QTC1Q−Q′TC1Q

′are invertible, the inverse of the
matrix K2 is obtained from Eq. (12).

[K2]
−1

= [D11]n×n [D12]n×n [D13]n×k

[D12]
T
k×n [D22]n×n [D21]n×k

[D13]
T
k×n [D21]

T
k×n [D33]k×k


(2n+k)×(2n+k)

(12)

First, the matrices C1 and C2 are calculated from
Eqs. (13) and (14), respectively. Then, the matrices
D11, D22, D33, D12, D13, and D23 are calculated ac-
cording to Eqs. (15) to (20), respectively.

C1 = (A)−1 (13)

C2 = (X −QTC1Q−Q′TC1Q
′)−1 (14)

D11 = C1 + C1QC2Q
TC1 (15)

D22 = C1 + C1Q
′C2Q

′TC1 (16)

D33 = C2 (17)

D12 = C1QC2Q
′TC1 (18)

D13 = −C1QC2 (19)

D23 = −C1Q
′C2 (20)

Proof of Theorem 2: By considering the uniqueness of
the matrix inverse, Eqs. (21) and (22) must be proved.

[K2] [K2]
−1

= [I] (21)

[K2]
−1

[K2] = [I] (22)

This theorem can be proved using Eq. (23) by sub-
stituting six matrices D11, D22, D33, D12, D13, and
D23 from Eqs. (15) to (20) and performing algebraic
operations and simplification. The calculation details
are not disclosed in Eq. (23) due to the similarity with
the proof of Theorem 1 and the avoidance of lengthen-
ing.

[K2] [K2]
−1

=

 A 0 Q
0 A Q′

QT Q′T X

 D11 D12 D13

DT
12 D22 D23

DT
13 DT

23 D33


[1ex]=

 AD11 +QDT
13 AD12 +QDT

23 AD13 +QD33

ADT
12 +Q′DT

13 AD22 +Q′DT
23 AD23 +Q′D33

QTD11 +Q′TDT
12 +XDT

13 QTD12 +Q′TD22 +XDT
23 QTD13 +Q′TD23 +XD33



=

 I 0 0
0 I 0
0 0 I

 = [I]

(23)

In addition, Eq. (22) is also proved similar to the
previous process, and a summary of the calculations is

given in Eq. (24).

[K2]
−1

[K2] =

D11 D12 D13

DT
12 D22 D21

DT
13 DT

21 D33

 A 0 Q
0 A Q′

QT Q′T X

 =

I 0 0
0 I 0
0 0 I

 = [I] (24)
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Fig. 1. Numbering of the nodes in a symmetrical skeletal structures from S1 group.

According to Eq. (12) to Eq. (20), the inverse of
the matrix K2 with dimensions (2n+k)×(2n+k) can
be derived by inverse calculation of two matrices with
dimensions smaller than the main matrix.

One of these two matrices has dimensions n×n (ma-
trix C1), and the other has dimensions k×k (matrix
C2).

3. The Proposed Approach for Optimal
Analysis of Symmetric Skeletal Struc-
tures

This section presents a systematic, programmable, and
step-by-step approach for analyzing symmetric struc-
tures. It is important to note that the structure’s sym-
metry is not determined solely by its geometrical sym-
metry. Support conditions, material’s physical proper-
ties, and member’s cross-sections must all be symmet-
rical at the same time for a structure to be considered
symmetrical. In this study, symmetrical structures are
divided into two general groups, which are called the
S1 group and the S2 group. The structure whose axis
of symmetry does not pass through any node and in-
tersects only the structure members is defined as a
symmetric structure from the S1 group. However, in
a symmetrical structure from the S2 group, the axis of
symmetry passes through the nodes of the structure.
After determining the structure’s symmetric group, a
step-by-step approach is presented for that group.

3.1. Step-by-step Approach for Analysis of
Symmetrical Skeletal Structures From the
S1 Group

For the analysis of symmetric structures from the S1
group, the nodes of the structure must be numbered
appropriately. First, the nodes of the left half of the
structure are numbered arbitrarily. The nodes of the
right half are then numbered in the same order as the
nodes of the left half. The difference between the num-
bers of the two corresponding nodes on the right and
left sides of the structure must be a constant value for
all nodes in this numbering. Fig. 1 shows an example
of this numbering for a symmetric frame from the S1
group.

The structural stiffness matrix is obtained using
this numbering method, as shown in Eq. (25).

K̄1 =

[
A B̄
B̄T Ā

]
(25)

6The structural stiffness matrix can be converted
into the matrix K1 using Eq. (26), and its inverse can
be calculated using Eqs. (2) to (6).[

I 0
0 T

] [
K̄1

] [I 0
0 T

]
=

[
I 0
0 T

] [
A B̄
B̄T Ā

] [
I 0
0 T

]
=

[
ccA B
B A

]
= K1

(26)

where T is a matrix with the same dimensions as ma-
trix A and is computed using Eq. (27).

T =


T̄

T̄
.

.
T̄

 (27)

where T̄ is a matrix derived from Eq. (28), depending
on the type of structure (truss or frame).

T̄=

 1 0 0
0 −1 0
0 0 1

 for plannar frame

T̄=

[
−1 0
0 1

]
for plannar truss

(28)

By having the inverse of the matrix K1, it is possi-
ble to obtain the inverse of the matrixK̄1, which is the
purpose of structural analysis, according to Eq. (29).[

K̄1

]−1
=

[
I 0
0 T

]
[K1]

−1

[
I 0
0 T

]
(29)

Meanwhile, it can be seen from Eq. (26), that the ma-
trices B and B̄ have a relationship according to Eq.
(30).

B = B̄T (30)

These equations demonstrate that only the matri-
ces A and B are required for the formation of the ma-
trix K1 to analyze symmetric structures from the S1
group. These matrices are obtained using half of the
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structure and without forming and assembling the stiff-
ness matrix of all structure members. As a result, the
following step-by-step approach for the analysis of sym-
metric structures from the S1 group can be presented:

Step 1- First, the nodes of the structure are num-
bered according to the described method.

Step 2- The main structure is halved, and the
halved structure’s stiffness matrix is created. Then, the
matrices A and B̄ from inside of this stiffness matrix
are extracted. As shown in Fig. 1, in the halved struc-
ture, all members that intersect the symmetry axis of
the structure must be present.

Step 3- The matrix T is produced according to Eq.
(27), depending on the type of structure (planar truss
or planar frame) and the dimensions of the matrix A.
Then matrix B is calculated using Eq. (30).

Step 4- By having the matrices A and B and using
Eqs. (3) to (6), the matrices D1 and D2 are obtained.

Step 5- By obtaining the matrices D1, D2, and T,
the inverse of the main structure’s stiffness matrix is
derived according to Eq. (31). Also, displacements of
the structure are calculated using Eq. (32).[

K̄1

]−1
=

[
D1 D2T
TD2 TD1T

]
(31)

{∆} =
[
K̄1

]−1 {F} (32)

Eq. (32) identifies ∆ as the vector of node displace-
ments, and F as the vector of external loads.

Step 6 - The internal forces (axial force, flexural
moment, and shear force) of all members can be deter-
mined after the nodal displacements have been calcu-
lated.

Step 7- By calculating the internal forces of mem-
bers, normal and shear stresses can be derived and used
to evaluate the constraints of the optimization prob-
lem.

3.2. Step-by-step Approach for Analysis of
Symmetrical Skeletal Structures From the
S2 Group

Proper numbering of nodes in the analysis of symmet-
ric structures from the S2 group must also be consid-

ered. First, arbitrary numbering is done for the left-
half nodes. Then, the right-half nodes are numbered
in the same order. It is necessary to mention that ac-
cording to Fig. 2, the difference in the node number
between the two corresponding nodes in the right and
left halves of the structure must be a constant number
for all nodes. Finally, the nodes at the intersection of
the symmetry axis are numbered.

The structural stiffness matrix is obtained using
this numbering method, as shown in Eq. (33).

K̄2 =

 A 0 Q
0 Ā Q̄
QT Q̄T X

 (33)

When the matrix K̄2 is converted to K2 using Eq.
(34), the inverse of the structure’s stiffness matrix can
be calculated using Eqs. (12) to (20).I 0 0

0 T 0
0 0 I

 [
K̄2

] I 0 0
0 T 0
0 0 I

 =

I 0 0
0 T 0
0 0 I

 A 0 Q
0 Ā Q̄
QT Q̄T X

I 0 0
0 T 0
0 0 I

 =

 A 0 Q
0 A Q′

QT Q′T X

 = K2

(34)

Eqs. (27) and (28) are used to produce the matrix
T in Eq. (34) using the same procedure as in Section
3.1.

[
K̄2

]−1
=

 I 0 0
0 T 0
0 0 I

 [K2]
−1

 I 0 0
0 T 0
0 0 I

 (35)

By having the matrix Q̄ and applying Eq. (36), the
matrix Q′ can also be calculated.

Q′ = TQ̄ (36)

The matrices A, X, Q, and Q′are required for the
analysis of symmetric structures from the S2 group.

Fig. 2. Numbering of the nodes in a symmetrical skeletal structure from the S2 group.
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These matrices are extracted from the stiffness ma-
trix of the halved structure by modeling half of it.
Therefore, there is no need to model and calculate the
stiffness matrix for the whole structure. For the anal-
ysis of symmetric structures from the S2 group, the
following step-by-step approach can be used:

Step 1- Appropriate numbering for structural nodes
is done according to the described method.

Step 2- The halved structure is modeled, and its
stiffness matrix is formed. It is important to note that
in the halved model of the structure, all members con-
necting to nodes along the structure’s symmetry axis
must be present. An example of this halving in a sym-
metric frame structure from the S2 group is shown in
Fig. 2. The matrices A, X, Q, and Q̄ are then com-
puted using the stiffness matrix of the halved structure.

Step 3- By creating a matrix T from Eq. (27) with
dimensions equal to the matrix A and considering the
type of structure, the matrix Q′can be obtained using
Eq. (36).

Step 4- By calculating the matrix Q′from Step 3
and the matrices A, X, and, Q from Step 2, the sub-
matrices D11, D22, D33, D12, D13, and D23 can be

calculated from Eqs. (15) to (20), respectively.
Step 5 - From the submatrices calculated in Step

4, the stiffness matrix of the main structure and its
displacements are computed using Eqs. (37) and (38).

[
K̄2

]−1
=

 D11 D12T D13

TDT
12 TD22T TD23

DT
13 DT

23T D33

 (37)

{∆} =
[
K̄2

]−1 {F} (38)

In the symmetry structures from the S2 group,
Steps 6 and 7 are similar to those from the S1 group.
The proposed approach for analysis of symmetric struc-
tures from the S1 groups and S2 groups is shown in Fig.
3.

4. Formulation of RBDO Problem

4.1. Reliability-Based Design Optimization
Method

The general form of a Reliability-Based Design Opti-
mization (RBDO) can be represented as Eq. (39),

Find : d, µX

to minimize : f(d,X, P )

subject to :

{
Deterministic constraint : gi(d,X, P ) ≤ 0 i = 1, 2, ...,m

Probabilistic constraint : (Ps)j = Prob (ḡj(d,X, P ) ≤ 0) ≥ (P target
s )j j = 1, 2, ..., n

dL ≤ d ≤ dU , µL
X ≤ µX ≤ µU

X

(39)

where d denotes the vector of deterministic design
variables. Furthermore, µX and µP are the mean vec-
tors of random variables X and random parameters P,
respectively. In size optimization problems, f is usually
the structure’s weight. Also, g i is the i

th deterministic
constraint. In addition, dL, dU ,µL

X , andµU
X are called

the lower and upper bounds of d and X, respectively.
(Ps

target)j , (Ps)j , and ḡj indicate the target proba-
bility of safety, probability of safety, and limit state
function related to the j th probabilistic constraint, re-
spectively. The probability of satisfying ḡj (d, X, P)
≤ 0 for the j th limit state function is represented by
Prob (ḡj (d, X, P) ≤ 0).

Besides, m and n denote the number of determin-
istic and probabilistic constraints, in turn.

4.2. Enhanced Vibrating Particle System
(EVPS)

The RBDO problem is solved using an expanded vi-
brating particle system (EVPS) method in this study.
This algorithm has been used to solve various engineer-
ing optimization problems [34-40]. The vibrating par-
ticles system (VPS) method was developed by Kaveh

and Ilchi [41] and is according to the free vibration of
single-degree-of-freedom systems with viscous damp-
ening. The EVPS was then proposed by Kaveh et al.
[42] to modify and improve the VPS’ efficiency. By
applying these modifications, the convergence speed
is increased. Also, the EVPS’ search capability has
been enhanced, allowing it to avoid local optimal so-
lutions. Eventually, all of this leads to better results.
One distinction between VPS and EVPS is that the
parameter of historically best position within the en-
tire population (HB) of the VPS algorithm is replaced
with a memory parameter in the EVPS, which holds
the number of memory sizes of the best historic loca-
tions in the entire population. If each iteration’s best
solution is better than the worst solution from the pre-
vious iteration, the best solution from each iteration
should replace the previous iteration’s worst value in
memory. In addition, the population generation equa-
tions are changed for the next iteration in the EVPS.
In EVPS, for each particle, there are three different
weights. The particles move closer to equilibrium po-
sitions via adjusting these weights. Diversification and
intensification are also brought into balance.
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Fig. 3. Flowchart of the proposed approach.

5. Illustrative Example

This problem compares the efficiency of the proposed
approach for symmetrical frames with different num-
bers of bays and stories. To compare the proposed
approach with the direct approach, which does not
use the structure’s symmetry properties, frame struc-
tures were analyzed. Fig. 4 shows the geometry
of this frame. In this study, the average time of
structural analysis by direct methods and the pro-
posed approach for frames of the S1 and S2 groups
with a different number of bays and stories were in-
vestigated. For symmetrical frames of the S1 group,
5, 11, and 21 bays were considered, and for sym-
metrical frames of the S2 group, 4, 10, and 20 bays
were considered. The Young’s modulus, cross-sectional
area, and moment of inertia of the members are
equal to 2.1×1011N/m2 (3.05×104 ksi), 47.8×10−4 m2

(7.41in2), and 14.84×10−8m4 (0.357 in4), respectively.
Grouping of these frames based on the number of bays

and analysis method is provided in Table 1.
Figs. 5 and 6 display the computational time for

the frames from the S1 and S2 groups, respectively. All
problems are coded in MATLAB software using the fi-
nite element method. The structural analysis was per-
formed in Windows 10 (64-bit operating system) with
an Intel (R) Core (TM) i7-7700HQ CPU @ 2.80 GHz
processor and a 32 GB installed RAM. According to
the results, the difference in computational time be-
tween the direct method and the proposed approach in
frame analysis is related to the number of bays and sto-
ries in the frames. So that with increasing the number
of bays and stories, the computational time difference
between the proposed approach and direct analysis in-
creases and vice versa. This is due to the fact that
as the number of bays and stories increases, the prob-
lem gets larger in dimensions. Thus, the proposed ap-
proach removes more degrees of freedom and members
by modeling half of the structure.
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Fig. 4. Symmetric frame structure with n spans and
m stories.

Table 1
Frame structure group.

Name of group Number of bays Method of analysis

5B-D 5 Direct method

5B-P 5 Proposed approach

11B-D 11 Direct method

11B-P 11 Proposed approach

21B-D 21 Direct method

21B-P 21 Proposed approach

4B-D 4 Direct method

4B-P 4 Proposed approach

10B-D 10 Direct method

10B-P 10 Proposed approach

20B-D 20 Direct method

20B-P 20 Proposed approach

As shown in Figs. 5 and 6, it is evident that for
a certain number of bays and with an increasing num-
ber of stories, the time difference between the proposed
approach and the direct method increases. When the
number of stories remains constant but the number of
bays increases, the difference becomes even more signif-
icant. The cause of the issue is that when the number
of stories remains constant but the number of bays in-
creases, halving the structure removes a considerable
number of members and degrees of freedom. The time
required to create and assemble the structural stiffness
matrix decreases as the number of members decreases.
The dimensions of the matrices required for structural
analysis and the computational time to inverse them
decrease as the degrees of freedom decrease.

6. Numerical Problems

Two standard structures are studied in this section to
exhibit the effectiveness of this approach in compari-
son to the direct method. In this study, symmetrical
structures are divided into two general groups, which
are called the S1 group and the S2 group. The struc-
ture whose axis of symmetry does not pass through

any node and intersects only the structure members
is defined as a symmetric structure from the S1 group.
However, in a symmetrical structure from the S2 group,
the axis of symmetry passes through the nodes of the
structure. In the first example, the structure is from
the S1 group and in the second example, the structure
is from the S2 group. The purpose of this study is to
optimize the size of two structures that have random
variables and probabilistic constraints. These struc-
tures are:

• A 3-bay 15-story frame

• A 200-bar planar truss

Fig. 5. Computational time for analysis of frame
structure from S1 group.

Fig. 6. Computational time for analysis of frame
structure from S2 group.

The EVPS in the RBDO problem has a population
size of 30 and a maximum number of iterations of 300.
The reliability of constraints in the inner loop of the
RBDO problem was evaluated using the MCS method
with 105 samples. Each problem is solved in 10 inde-
pendent runs to ensure the EVPS performance. The
first problem is the symmetric structure from the S1
group, and the second problem is the symmetric struc-
ture from the S2 group.

6.1. A 3-bay 15-story Frame

A 15-story frame with three bays is illustrated in Fig.
7, which shows the geometry, loading, grouping of
members, and numbering of its nodes. This frame is
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symmetrical due to the symmetry in the geometry, the
support conditions, the mechanical properties of the
materials, and the geometric characteristics of mem-
bers’ cross-sections. The frame’s axis of symmetry does
not intersect any nodes. Therefore, this structure is in
the S1 group of symmetrical structures. This frame,
which is a well-known benchmark problem, has been
investigated by many researchers [43, 44]. This frame
has 64 nodes and 105 members. The frame members
are organized into ten groups of columns and one group
of beams (11 groups in total). The number of ran-
dom variables in this problem is 11, the number of
random parameters is 3, and there are 14 statistical
variables in total. The cross-section of members of this
frame is a random design variable of the problem, and
concentrated lateral load, distributed gravity load of
beams, and modulus of elasticity of steel materials of
the frame are random parameters of the problem. Table
2 shows the statistical characteristics of these variables.
The problem’s random design variables are selected dis-
cretely from 267 W-sections. The yield stress (Fy) and
weight per volume (γ) for the materials of this frame
are 248.2MPa (36ksi) and 76.819kN/m3 (0.283lb/in3),
respectively. The effective length factors in all mem-
bers are assumed to be kx ≥ 1.0 for in-plane buckling
and ky = 1.0 for out-of-plane buckling. Also, it is
assumed that all columns are non-braced along their
length, and all beams have a non-braced length equal
to one-fifth of the span length.

Table 2
Statistical characteristics of variables for the 3-bay 15-story
frame.

Variable Distribution Mean CV
Ai Normal Design Varabile 0.05
P, kN (kips) Normal 30 (6.75) 0.10
W, kN/m (kips/ft) Normal 50 (3.42) 0.10
E, GPa (ksi) Normal 200 (29000) 0.05

The problem’s constraints are based on design lim-
itations for steel moment-resisting frames according to
the AISC-LRFD [45]. The problem’s probabilistic con-
straint is related to the structure’s roof drift and is
derived from Eq. (40).

Ps= Prob

(
|∆T |
H

−R ≤ 0

)
≥ P target

s = 99.865%

(40)

where ∆T , H, and R are the roof drift, height of the
frame, and maximum drift index, respectively. In this
study, the value of R is considered to be 1

300 . The
problem also has two deterministic constraints. Eq.
(41) provides the first deterministic constraint, which
is associated with the inter-story drift.

|di|
hi

−Rl ≤ 0 i = 1, 2, ..., ns (41)

where hi, di, ns, and Rl are the ith floor’s story height,
the ith floor’s inter-story drift, the total number of sto-
ries, and the index of inter-story drift, respectively.

Fig. 7. A 3-bay 15-story frame.

The value of Rl in this problem is equal to 1
300 .

The second deterministic constraint is also about the
strength of the frame members and is obtained from
Eq. (42).

pu

2ϕcpn
+
[

Mux

ϕbMnx
+

Muy

ϕbMny

]
− 1 ≤ 0 for pu

ϕcpn
≤ 0.2

pu

ϕcpn
+ 8

9

[
Mux

ϕbMnx
+

Muy

ϕbMny

]
− 1 ≤ 0 for pu

ϕcpn
≥ 0.2

(42)

where Mu and Pu indicate the required bending and
axial strength, respectively. These values will be deter-
mined by the structural analysis. Mn and Pn are the
nominal bending and axial strength for the tension and
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compression members, respectively. These parameters
will be calculated from the load and resistance factor
design (LRFD) [45]. Furthermore, ϕc represents the
axial resistance reduction factor, It is 0.90 for tension
members and 0.85 for compression members. Also, ϕb

is equal to 0.90, which is the bending resistance reduc-
tion factor.

The optimal design, and the best, worst, mean,
and standard deviation of the weight calculated by the
EVPS are all provided in Table 3. Fig. 8 illustrates the
EVPS convergence plot for the best and mean runs. In
addition, Figs. 9 and 10 show the stress ratio and inter-
story drift for the EVPS’ best solution, respectively.

Table 3
Optimum designs for the 3-bay 15-story frame.

Optimal W-Shaped

section

Members group EVPS

1 W14X99

2 W27X161

3 W12X79

4 W27X114

5 W21X68

6 W18X86

7 W10X45

8 W21X68

9 W12X30

10 W16X40

11 W21X44

Best weight, kN (lb.) 391.88(88102.0 lb.)

Mean weight, kN (lb.) 409.11(91977.1 lb.)

Worst weight, kN (lb.) 443.67(99745.3 lb.)

Standard deviation, kN (lb.) 19.40(4361.8 lb.)

β (Probability of safety %) 3.035 (99.88%)

in best solution

Fig. 8. Convergence plot for the optimal and mean
runs of the EVPS of the 3-bay 15-story.

Table 4 provides an evaluation of the computational
time of the proposed approach with the direct method
for static analysis of the 3-bay 15-story frame struc-
ture. By the direct method, it is necessary to inverse
a matrix with dimensions of 180×180 in order to per-
form static analysis of the 3-bay 15-story frame. While

in the efficient proposed approach, two matrices with
dimensions of 90×90 are inverted. When the dimen-
sions of matrices are halved, less memory is required
to store the data, and it takes less time to calculate
the inverse of matrices. In comparison to the direct
method, the proposed approach reduces the average
computational time for static analysis of the frame by
37%. The time reduction is due to the decrease in the
number of members needed to assemble the stiffness
matrix of the halved structure.

Table 4
Evaluation of the computational time of two methods for the
3-bay 15-story frame.

Method
Inverse CPU time
problem (sec)

Direct 1 matrix of
15.416×10−4

method 180 × 180
Proposed 2 matrices of

11.253×10−4

approach 90 × 90
Time ratio 1.37

Fig. 9. Stress ratio for the optimal design of the EVPS
for the 3-bay 15-story frame.

Fig. 10. Inter-story drift for the optimal design of the
EVPS for the 3-bay 15-story frame.
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Also, it is due to the inverse calculation of matrices
whose dimensions are half the dimensions of the main
structure’s stiffness matrix. The time it takes to find
the optimal solution in EVPS is decreased by reducing
the structural analysis time. So that the time required
to perform 10 independent runs with a population size
of 30 and a maximum iteration number of 300, using
the proposed approach to analyze this frame in the
optimization process, is about 60,917 minutes (1,015
hours). However, if the direct method for frame anal-
ysis is utilized in the optimization process under the
same conditions, it takes about 82,846 minutes (1,380
hours). These results demonstrate the efficiency and
effectiveness of the proposed approach in the repeated
structural analysis that occurs when solving the RBDO
problem by meta-heuristic algorithms.

6.2. A 200-bar Planar Truss Structure

The second problem is the 200-bar planar truss struc-
ture addressed as an example of size optimization in
structural optimization research [46-48]. The geome-
try of this truss and the appropriate numbering for the
nodes and their members are shown in Fig. 11. This
truss is a symmetrical structure from the S2 group.
Because, firstly, it has symmetry in geometry, sup-
port conditions, mechanical properties of materials,

and cross-sectional characteristics of members. Sec-
ondly, the truss’s axis of symmetry passes through its
nodes. The number of nodes of this truss is 77, the
number of its members is 200, and it includes 150 de-
grees of freedom in total. There are 32 statistical vari-
ables, 29 random design variables, and three random
parameters. Table 5 shows the statistical characteris-
tics of these variables. The truss members are classified
into 29 groups and listed in the results. The 29 random
design variables for this problem were selected from the
30 sections presented in Table 6. The weight per vol-
ume of material (γ) for this problem is 76.819 kN/m3
(0.283 lb/in3). The different load cases applied to this
structure are listed in Table 7. This study considers
the load case 3, which is a combination of cases 1 and
2.

Table 5
Statistical charactristic of variables for the 200-bar planar truss
structure.

Variable Distribution Mean CV

Ai, cm
2 (in.2) Normal Design varabile 0.05

P1, kN (kips) Normal 1000 (224.8) 0.10

P2, kN (kips) Normal 10000 (2248) 0.10

E, GPa (ksi) Normal 3×104 (4.35×106) 0.05

Table 6
A set of 30 discrete design variables in the 200-bar planar truss structure.

Section number Ai, cm
2 (in.2) Section number Ai, cm

2 (in.2) Section number Ai, cm
2 (in.2)

1 0.64 (0.1) 11 13.81 (2.14) 21 54.99 (8.52)

2 2.23 (0.34) 12 17.39 (2.69) 22 59.99 (9.3)

3 2.83 (0.44) 13 18.06 (2.8) 23 69.99 (10.85)

4 3.47 (0.53) 14 20.19 (3.13) 24 85.99 (13.33)

5 6.15 (0.95) 15 22.99 (3.56) 25 92.19 (14.29)

6 6.97 (1.08) 16 24.59 (3.81) 26 110.77 (17.17)

7 7.57 (1.17) 17 30.99 (4.80) 27 123.74 (19.18)

8 8.59 (1.33) 18 38.39 (5.95) 28 152.77 (23.68)

9 9.59 (1.48) 19 42.39 (6.57) 29 181.16 (28.08)

10 11.38 (1.76) 20 46.39 (7.19) 30 217.41 (33.7)

Table 7
Loading conditions for the 200-bar planar truss structure.

Case no. Load kN (lb) Direction Nodes

1 P1 X 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71

2 P2 Y
1–6, 8, 10, 12, 14–20, 22, 24, 26, 28–34, 36, 38, 40,42–48, 50, 52, 54,

56–62, 64, 66,68, 70–75

3 Load cases 1 and 2 acting together
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The problem’s probabilistic constraints are related
to the members’ axial tension and compression stresses.
These constraints are calculated from Eq. (43).

(Ps)j = Prob

(
|σj |
σall

− 1 ≤ 0

)
≥ P target

s = 99.865%

for j= 1, 2, ..., 200

(43)

where sigmaj and σall are the stress of the jth mem-
ber and the allowable stress of the members, respec-

tively. σallfor tension and compression members of the
truss is 68.95MPa (10ksi). There are no displacement
constraints in this problem, but the members’ cross-
sections should be greater than 0.1cm2 (in.2).

Table 8 shows the results for the optimal design and
the best, worst, mean, and standard deviation of the
weight calculated by the EVPS and grouping of truss
members. Fig. 12 shows the EVPS convergence plot
for the best and mean runs. In addition, Fig. 13 shows
the stress ratio for the best solution for the EVPS in
this problem.

Fig. 11. A 200-bar planar truss structure.
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Fig. 12. Convergence plot for the optimal and mean
runs of the EVPS for the 200-bar planar truss struc-
ture.

Fig. 13. Stress constraint boundaries of the 200-
bar planar truss evaluated in the optimized design by
EVPS.

Table 8
Optimum designs for the 200-bar planar truss structure.

Area of members group, Ai , cm
2 (in.2) Members in the group EVPS

A1 1, 2, 3, 4 2.23 (0.34)
A2 5, 8, 11, 14, 17 11.38 (1.76)
A3 19, 20, 21, 22, 23, 24 3.47 (0.53)
A4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 3.47 (0.53)
A5 26, 29, 32, 35, 38 6.97 (1.08)

A6
6, 7, 9, 10, 12, 13, 15, 16, 27,

2.23 (0.34)
28, 30, 31, 33, 34, 36, 37

A7 39, 40, 41, 42 3.47 (0.53)
A8 43, 46, 49, 52, 55 13.81 (2.14)
A9 57, 58, 59, 60, 61, 62 6.15 (0.95)
A10 64, 67, 70, 73, 76 20.19 (3.13)

A11
44, 45, 47, 48, 50, 51, 53, 54,

2.23 (0.34)
65, 66, 68, 69, 71, 72, 74, 75

A12 77, 78, 79, 80 0.53 (3.47)
A13 81, 84, 87, 90, 93 22.99 (3.56)
A14 95,96, 97, 98, 99, 100 2.83 (0.44)
A15 102, 105, 108, 111, 114 20.19 (3.13)

A16
82, 83, 85, 86, 88, 89, 91, 92, 103,

3.47 (0.53)
104, 106, 107, 109, 110, 112, 113

A17 115, 116, 117, 118 0.64 (0.10)
A18 119, 122, 125, 128, 131 30.99 (4.80)
A19 133, 134, 135, 136, 137, 138 2.83 (0.44)
A20 140, 143, 146, 149, 152 46.39 (7.19)

A21
120, 121, 123, 124, 126, 127, 129, 130,

3.47 (0.53)
141,142, 144, 145, 147, 148, 150, 151

A22 153, 154, 155, 156 18.06 (2.80)
A23 157, 160, 163, 166, 169 46.39 (7.19)
A24 171, 172, 173, 174, 175, 176 3.47 (0.53)
A25 178, 181, 184, 187, 190 42.39 (6.57)

A26
158, 159, 161, 162, 164, 165, 167, 168,

9.59 (1.48)
179,180, 182, 183, 185, 186, 188, 189

A27 191, 192, 193, 194 24.59 (3.81)
A28 195, 197, 198, 200 42.39 (6.57)
A29 196, 199 59.99 (9.30)
Best weight, kN (kips) 85.09 (19.13)
Mean weight, kN (kips) 93.27 (20.97)
Worst weight, kN (kips) 1103.91 (23.36)
Standard deviation, kN (kips) 73.66 (16.56)
Minimum of β (Probability of safety %)

3.062 (99.89%)
in best solution
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Table 9 compares the computational time of the
proposed approach to that of the direct method for
static analysis of the 200-bar planar truss structure.
The inverse calculation of a 150×150 matrix is neces-
sary for the static analysis of the 200-bar planar truss
structure. However, In the proposed approach, two
matrices, one with 64×64 dimensions and the other
with 22×22, must be inverted. In the proposed ap-
proach, the dimensions of the matrices to be inversed
are less than half the dimensions of the main struc-
ture’s stiffness matrix. Using the proposed approach,
the computational time for static analysis of this truss
is reduced by 98% compared to the direct method. This
time savings is due to both a reduction in the number
of members required to assemble the structural stiff-
ness matrix in the halved model and a reduction in the
size of the matrices that must be inversed in the pro-
posed approach. The proposed approach also reduces
the computational time required to obtain the optimal
solution in the EVPS. The time required to perform
10 independent runs with a population size of 30 and a
maximum iteration number of 300, using the proposed
approach for analysis of this truss in the optimization
process, is about 7,017 minutes (117 hours). However,
if the direct method of truss analysis is employed in the
optimization process with the same EVPS parameters,
it takes about 13,754 minutes (229 hours). The effi-
ciency and effectiveness of the proposed approach for
the repeated analysis of the structure that occurs dur-
ing the procedure of solving the RBDO problem using
meta-heuristic algorithms can be proved by comparing
these two times.

Table 9
Evaluation of the computational time of two methods for the
200-bar planar truss structure.

Method
Inverse CPU time
problem (sec)

Direct method 1 matrix of 150 × 150 8.998×10−4

Proposed 1 matrix of 64 × 64
4.454×10−4

approach and 1 matrix of 22 × 22
Time ratio 1.98

7. Conclusions

Using the properties of symmetrical structures, these
structures can be analyzed more quickly and accu-
rately. When solving problems involving large-scale
structures that require many analyses, the need to re-
duce the analysis time of symmetrical structures be-
comes even more significant. Solving the RBDO prob-
lem integrated with meta-heuristic algorithms is one of
these problems that require a repeated structural anal-
ysis. An efficient approach for the optimal analysis of
symmetric skeletal structures is addressed in this study,
and it is used to solve the RBDO problems of this type
of structure. In this approach, an efficient approach
for the analysis of symmetrical structures is presented,

which reduces the calculation time and the memory
required for data storage. This approach, which uses
a systematic and programmable process, extracts the
required submatrices whose dimensions are half or less
than half the dimensions of the main structure’s stiff-
ness matrix. The inverse of the main structure’s stiff-
ness matrix can then be calculated by computing the
inverse of matrices with the dimensions of these sub-
matrices and performing matrix algebra operations. In
this approach, it is not necessary to create the main
structure’s stiffness matrix by assembling all of the
stiffness matrices for each member; it is possible to an-
alyze the main structure by creating a stiffness matrix
for half of it and extracting the relevant submatrices.
In the proposed approach, only one structure is mod-
eled, and there is no need to convert the load and com-
bine the obtained responses. However, in the conven-
tional method for symmetrical structure analysis, two
halved substructures with distinct support and load-
ing conditions are analyzed. A symmetrical structure
with general loads is turned into two structures with
symmetric and antisymmetric loads using the superpo-
sition principle. Then, depending on the type of load-
ing, each of these two structures becomes two halved
substructures with different boundary conditions (at
the intersection of the structure with its axis of sym-
metry). Finally, each of these two substructures is ana-
lyzed separately, and their responses are appropriately
combined to obtain the main structure response. Three
symmetric structures are used to demonstrate the ef-
ficacy, speed, and accuracy of the proposed approach,
and the results are compared to those obtained using
the direct method. The first problem involves calculat-
ing and comparing the time required to analyze sym-
metrical frames with various numbers of bays and sto-
ries. The results show that the time difference between
the two analysis methods increases with increasing the
number of bays and stories, which increases the struc-
tural degree of freedom and dimensions of the prob-
lem. To assess the proposed approach in the RBDO
problem, the 3-bay 15-story symmetric frame and 200-
bar symmetric planar truss are investigated. As the
result of these two problems displays, the proposed ap-
proach reduces the dimensions of matrices that must
be inverted, the data stored in memory, and the com-
putational time. In addition, compared to the direct
method, the proposed approach requires significantly
less computational time to solve the RBDO problem
using EVPS. This time reduction varies according to
the type of symmetry, geometry, and dimensions of the
structure. For example, utilizing the direct structural
analysis method for structural analysis to determine
the best solution for the RBDO problem on a 200-
bar symmetric planar truss with 10 independent runs
takes 229 hours (approximately 1.98% longer than the
proposed approach). This time would be 1,380 hours
(about 37% longer than the proposed approach) in the
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3-bay 15-story symmetric frame.

References

[1] Kangwai R, Guest S (1999) Detection of fi-
nite mechanisms in symmetric structures. In-
ternational Journal of Solids and Structures
36(36):5507-5527.

[2] Kangwai R, Guest S, Pellegrino S (1999) An in-
troduction to the analysis of symmetric structures.
Computers and structures 71(6):671-688.

[3] Kangwai R, Guest S (2000) Symmetry-adapted
equilibrium matrices. International Journal of
Solids and Structures 37(11):1525-1548.

[4] Harth P, Michelberger P (2016) Determination of
loads in quasi-symmetric structure with symmetry
components. Engineering Structures 123:395-407.

[5] Harth P, Beda P, Michelberger P (2017) Static
analysis and reanalysis of quasi-symmetric struc-
ture with symmetry components of the symme-
try groups C3v and C1v. Engineering Structures
152:397-412.

[6] Zhang P, Fan W, Chen Y, Feng J, Sareh P (2022)
Structural symmetry recognition in planar struc-
tures using Convolutional Neural Networks. Engi-
neering Structures 260:114227.

[7] Chen Y, Feng J, Qian Z (2016) A self-equilibrated
load method to locate singular configurations of
symmetric foldable structures. Acta Mechanica
227(10):2749-2763.

[8] Kaveh A, Nikbakht M, Rahami H (2010) Improved
group theoretic method using graph products for
the analysis of symmetric-regular structures. Acta
mechanica 210(3):265-289.

[9] Kaveh A, Jahanmohammadi A (2008) Group-
theoretic method for forced vibration analysis of
symmetric structures. Acta mechanica 199(1):1-
16.

[10] Kaveh A, Fazli H (2007) Graph coloration and
group theory for factorization of symmetric dy-
namic systems. Acta mechanica 192(1):111-133.

[11] Kaveh A, Nikbakht M (2008) Stability analysis of
hyper symmetric skeletal structures using group
theory. Acta mechanica 200(3):177-197.

[12] Zingoni A (2012) Symmetry recognition in group-
theoretic computational schemes for complex
structural systems. Computers and Structures
94:34-44.

[13] Chen Y, Feng J (2012) Generalized eigenvalue
analysis of symmetric prestressed structures us-
ing group theory. Journal of Computing in Civil
Engineering 26(4):488-497.

[14] Kaveh A, Rahami H (2011) Block circulant ma-
trices and applications in free vibration analysis
of cyclically repetitive structures. Acta Mechan-
ica 217(1):51-62.

[15] Kaveh A, Rahami H (2007) Tri-diagonal and
penta-diagonal block matrices for efficient eigenso-
lutions of problems in structural mechanics. Acta
Mechanica 192(1):77-87.

[16] Kaveh A, Rahami H (2007) Compound matrix
block diagonalization for efficient solution of eigen-
problems in structural mechanics. Acta Mechanica
188(3):155-166.

[17] Kaveh A, Sayarinejad M (2003) Eigensolutions for
matrices of special structures. Communications in
Numerical Methods in Engineering 19(2):125-136.

[18] Kaveh A, Sayarinejad M (2004) Graph symmetry
and dynamic systems. Computers and Structures
82 (23-26):2229-2240.

[19] Kaveh A, Nikbakht M (2006) Buckling load of
symmetric plane frames using canonical forms and
group theory. Acta mechanica 185(1):89-128.

[20] Kaveh A, Rahami H (2004) A new spectral
method for nodal ordering of regular space struc-
tures. Finite Elements in Analysis and Design 40
(13-14):1931-1945.

[21] Kaveh A, Sayarinejad M (2006) Eigensolution
of specially structured matrices with hyper-
symmetry. International journal for numerical
methods in engineering 67(7):1012-1043.

[22] Kaveh A, Sayarinejad M (2006) Additivity prop-
erties of graphs with Form II symmetry. Com-
munications in numerical methods in engineering
22(3):181-195.

[23] Kaveh A, Salimbahrami B (2007) Buckling load
of symmetric plane frames using canonical forms.
Computers and Structures 85 (17-18):1420-1430.

[24] Kaveh A, Rahami H (2005) New canonical forms
for analytical solution of problems in structural
mechanics. Communications in Numerical Meth-
ods in Engineering 21(9):499-513.

[25] Kaveh A, Rahami H (2004) An efficient method
for decomposition of regular structures using
graph products. International Journal for Numer-
ical Methods in Engineering 61(11):1797-1808.



Journal of Stress Analysis/ Vol. 8, No. 2, 2023-24 17

[26] Meng Z, Zhou H, Li G, Hu H (2017) A hybrid
sequential approximate programming method for
second-order reliability-based design optimization
approach. Acta Mechanica 228(5):1965-1978.

[27] Nikolaidis E, Burdisso R (1988) Reliability based
optimization: a safety index approach. Computers
and Structures 28(6):781-788.

[28] Dubourg V, Sudret B, Bourinet J-M (2011)
Reliability-based design optimization using krig-
ing surrogates and subset simulation. Structural
Multidisciplinary Optimization 44(5):673-690.

[29] Shan S, Wang GG (2008) Reliable design space
and complete single-loop reliability-based design
optimization. Reliability Engineering and System
Safety 93(8):1218-1230.
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