[1] M. Koizumi, Concept of FGM, Ceramic. Trans. 34 (1993) 3-10.
[2] S.B. Singh, S. Ray, Creep analysis in an isotropic FGM rotating disc of Al-Sic composite, J. Mate. Process. Tech. 143(1) (2003) 616-622.
[3] S.B. Singh, S. Ray, Modeling the anisotropy and creep in orthotropic aluminum-silicon carbide composite rotating disc, J. Mech. Mater. 34 (2002) 363-372.
[4] S. Hui-shen, Post buckling analysis of axial loaded functionally graded cylindrical panels in thermal environments. Int. J. Solids. Struc. 39 (2002) 5991-
6010.
[5] L.P. Jacob, Thermoelastic analysis and optimization of functionally graded plates and shells, MSc Thesis, USA: Maine University, 2003.
[6] K.M. Liew, S. Kitipornchai, X.Z. Zhang, C.W. Lim, Analysis of the thermal stress behavior of functionally graded hollow circular cylinders. Int. J. Solids.
Struct. 40 (2003) 2355-2380.
[7] T. Singh, V.K. Gupta, Effect of anisotropy on steady state creep in functionally graded cylinder, Compos. Struct. 93(2) (2011) 747-758.
[8] J.F. Durodola, O. Attia, Deformation and stresses in FG rotating disks. Compos. Sci. Technol. 60(2000) 987-995.
[9] A. Loghman, V. Atabakhshian, Semi-analytical Solution for Time-dependent creep analysis of rotating cylinders made of anisotropic exponentially graded material (EGM), J. Solid. Mech. 4(3) (2012) 313-326.
[10] M. Ghannad, G.H. Rahimi, M. Zamani-Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally
graded materials, Composites. 45 (2013) 388-396.
[11] M. Zamani-Nejad, M.D. Kashkoli, Timedependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat ux. Int. J. Eng. Sci. 82 (2014) 222-237.
[12] M. Zamani-Nejad, M. Jabbari, M. Ghannad, Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under
non-uniform pressure loading. Compos. Struct. 122 (2015) 561-569.
[13] M. Zamani-Nejad, M. Jabbari, M. Ghannad, Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under nonuniform arbitrarily pressure loading. Int. J. Eng. Sci. 89 (2015) 86-99.
[14] M. Zamani-Nejad, M. Jabbari, M. Ghannad, Elastic analysis of rotating thick cylindrical pressure vessels under non-uniform pressure: Linear and
non-linear thickness. Period. Polytech. Mech. 59(2) (2015) 65.
[15] M. Jabbari, M. Zamani-Nejad, M. Ghannad, Thermoelstic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading, Int. J. Eng. Sci. 96 (2015) 1-18.
[16] A. Loghman, H. Shayeste-moghadam, MagnetoThermo-Mechanical creep behavior of nanocomposite rotating cylinder made of polypropylene reinforced by MWCNTS, J. Theor. App. Mech-pol. 54 (2011) 239-249.
[17] M. Garg, B.S. Salaria, V.K. Gupta, Modeling creep in a variable thickness rotating FGM disc under varying thermal gradient, Eng. Computations. 32 (2015) 1230 -1250.
[18] A. Hassani, M.H. Hojjati, G.H. Farrahi, R.A. Alashti, Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks. Commun. Nonlinear Sci. Numer. Simul. 17(9) (2012) 3747-3762.
[19] M. Garg, B.S. Salaria, V.K. Gupta, Effect of disc geometry on the steady-state creep in a rotating disc made of functionally graded material. Mater.
Sci. Forum (2013) 183-191.
[20] K. Khanna, V.K. Gupta, S.P. Nigam, Creep analysis of a variable thickness rotating FGM disc using Tresca Criterion, defence. Sci. J. 65 (2015) 163-170.
[21] S.A. Hosseini Kordkheili, R. Naghdabadi, Thermoelastic analysis of functionally graded rotating disk, Compos. Struct. 79 (2007) 508-516.