[1] R.V. Noort, S.P. Yates, T.R.P. Martin, A.T. Barker, M.M. Black, A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium, Biomaterials. (1982) 21-26.
[2] P.H. Chew, F.S.P. Yin, S.L. Zeger, Biaxial Stressstrain Properties of Canine Pericardium, J. Mol. Cell. Cardiol. (1986) 567-578.
[3] M.M. Maestro, J.O.N. Turnay, P. Fernandez, D. Suarez, J.M.G. Paez, S. Urillo, M.A. Lizarbe, E. Jorge-Herrero, Biochemical and mechanical behavior of ostrich pericardium as a new biomaterial, Acta. Biomater. 2 (2006) 213-219.
[4] E. Daar, E. Woods, J.L. Keddie, A. Nisbet, D. A. Bradley, Effect of penetrating ionising radiation on the mechanical properties of pericardium, Nucl. Instrum. Methods. 619 (2010) 356-360.
[5] J. M.G. Paez, E.J. Herrero, A.C. Sanmartin, I. Millan, A. Cordon, M.M. Maestro, A. Rocha, B. Arenaz, J.L. Castillo-Olivares, Comparison of the mechanical behaviors of biological tissues subjected to uniaxial tensile testing: pig, calf and ostrich pericardium sutured with Gore-Tex, J. Biomaterials. 24 (2003) 1671-1679.
[6] R. Claramunt, J.M.G. Paez, L. Alvarez, A. Ros, M.C. Casado, Fatigue behaviour of young ostrich pericardium, Mater. Sci. Eng. (2012) 1415-1420.
[7] D. Cohn, H. Younes, E. Milgarter, G. Uretzky, Mechanical behaviour of isolated pericardium: species, isotropy, strain rate and collagenase effect on pericardium tissues, J. Clin. Mater. (1987) 115-124.
[8] P. Zioupos, J.C. Barbenel, Mechanics of native bovin pericardium, J. Biomaterials. (1994) 374-382.
[9] J.M. Lee, D.R. Boughner, Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium., Circ. Res. (1985) 475-481.
[10] N. Gundiah, M.B. Ratcliffe, L.A. Pruitt, Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests, J. Biomech. (2007) 586-594.
[11] M.A. Zulliger, P. Fridez, K. Hayashi, N. Stergiopulos, A strain energy function for arteries accounting for wall composition and structure, J. Biomech. (2004) 989-1000.
[12] M.A. Zulliger, N. Stergiopulos, Structural strain energy function applied to the ageing of the human aorta, J. Biomech. (2007) 3061-3069.
[13] S.G. Kulkarni, X.L. Gao, S.E. Horner, R.F. Martlock, J.Q. Zheng, A transversely isotropic viscohyperelastic constitutive model for soft tissues, Math. Mech. Solids. (2014) 1-24.
[14] P.G. Pavan, P. Pachera, C. Tiengo, A. Natali, Biomechanical behavior of pericardial human tissue: a constitutive formulation, Inst. Mech. Eng. H. J. Eng. Med. (2014) 926-934.
[15] K. Miller, Constitutive modelling of abdominal organs, J. Biomech. (2000) 367-373.
[16] Z. Gao, K. Lister, D.J. Desai, Constitutive Modeling of Liver Tissue: Experiment and Theory, Ann. Biomed. Eng. (2010) 505-516.
[17] D.Z. Veljkovic, V.J. Rankovic, S.B. Pantovic, M.A. Rosic, M.R. Kojic, Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models, Acta. Bioeng. Biomech. (2014) 37-45.
[18] R.W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Comput. mech. (2004) 484-502.
[19] H. Darijani, R. Naghdabadi, M.H. Kargarnovin, Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates, J. Mech. Eng. Sci. (2010) 591-602.
[20] R.W. Ogden, Nonlinear elastic deformation, Dover Publication, 1997.
[21] T. Belytschko, W.K. Liu, B. Moran, Nonlinear finite elements for continua and structures, John Wiley and Sons, LTD, 2000.
[22] H. Darijani, R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta. Mech. (2010) 235-254.
[23] M. Mansouri, H. Darijani, Constitutive modeling of isotropic hyperelastic material in an exponential framework using a self-contained approach, Int. J. Solids. Struct. (2014) 4316-4326.
[24] F.J. Carter, T.G. Frank, P.J. Davies, D. Mc Lean, A. Cuschieri, Measurements and modelling of the compliance of human and porcine, Med. Image. Ana. (2001) 231-236.
[25] M.W. Lai, E. Krempl, D. Ruben, Introduction to continuum mechanics, Elsevier. (2010).
[26] T. Beda, An approach for hyperelastic modelbuilding and parameters estimation a review of constitutive models, Eur. Polym. J. (2004) 97-108.
[27] A.S. Gendy, A.F. Saleeb, Nonlinear material parameter estimation for charcterizing hyperelastic large strain models, Comput. Mech. 25 (2000) 66-77.
[28] H. Hosseinzadeh, M. Ghoreishi, K. Narooei, Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone, J. Mech. Behav. Biomed. Mater. 59 (2016) 393-403.