An Investigation to Nonlinear Elastic Behavior of Pericardium Using Uniaxial Tensile Test

Document Type: Original Article


Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.


In this paper, the nonlinear elastic behavior of pericardium of human, canine, calf and ostrich was studied. For this purpose, the mechanical behavior was investigated from two viewpoints of the Cauchy and Green elastic materials.
Firstly, the experimental data were fitted by Cauchy elastic stress equation. The results showed that the response of Cauchy elastic materials was not fitted with the experimental data appropriately. Secondly, the Green elastic materials were studied by assuming strain energy functions for the mechanical response of the samples. For this purpose, the exponential-exponential, power law-power law, and exponential-power law energy functions were investigated by mathematical programming. It was observed that all energy functions were fitted with the experimental data accurately, especially the power law-power law function. Finally, it was observed that the Green elastic materials theory was more appropriate for studying the mechanical behavior of pericardium by comparing the experimental and theoretical results.


[1] R.V. Noort, S.P. Yates, T.R.P. Martin, A.T. Barker, M.M. Black, A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium, Biomaterials. (1982) 21-26.
[2] P.H. Chew, F.S.P. Yin, S.L. Zeger, Biaxial Stressstrain Properties of Canine Pericardium, J. Mol. Cell. Cardiol. (1986) 567-578.
[3] M.M. Maestro, J.O.N. Turnay, P. Fernandez, D. Suarez, J.M.G. Paez, S. Urillo, M.A. Lizarbe, E. Jorge-Herrero, Biochemical and mechanical behavior of ostrich pericardium as a new biomaterial, Acta. Biomater. 2 (2006) 213-219.
[4] E. Daar, E. Woods, J.L. Keddie, A. Nisbet, D. A. Bradley, Effect of penetrating ionising radiation on the mechanical properties of pericardium, Nucl. Instrum. Methods. 619 (2010) 356-360.
[5] J. M.G. Paez, E.J. Herrero, A.C. Sanmartin, I. Millan, A. Cordon, M.M. Maestro, A. Rocha, B. Arenaz, J.L. Castillo-Olivares, Comparison of the mechanical behaviors of biological tissues subjected to uniaxial tensile testing: pig, calf and ostrich pericardium sutured with Gore-Tex, J. Biomaterials. 24 (2003) 1671-1679.
[6] R. Claramunt, J.M.G. Paez, L. Alvarez, A. Ros, M.C. Casado, Fatigue behaviour of young ostrich pericardium, Mater. Sci. Eng. (2012) 1415-1420.
[7] D. Cohn, H. Younes, E. Milgarter, G. Uretzky, Mechanical behaviour of isolated pericardium: species, isotropy, strain rate and collagenase effect on pericardium tissues, J. Clin. Mater. (1987) 115-124.
[8] P. Zioupos, J.C. Barbenel, Mechanics of native bovin pericardium, J. Biomaterials. (1994) 374-382.
[9] J.M. Lee, D.R. Boughner, Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium., Circ. Res. (1985) 475-481.
[10] N. Gundiah, M.B. Ratcliffe, L.A. Pruitt, Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests, J. Biomech. (2007) 586-594.
[11] M.A. Zulliger, P. Fridez, K. Hayashi, N. Stergiopulos, A strain energy function for arteries accounting for wall composition and structure, J. Biomech. (2004) 989-1000. 
[12] M.A. Zulliger, N. Stergiopulos, Structural strain energy function applied to the ageing of the human aorta, J. Biomech. (2007) 3061-3069.
[13] S.G. Kulkarni, X.L. Gao, S.E. Horner, R.F. Martlock, J.Q. Zheng, A transversely isotropic viscohyperelastic constitutive model for soft tissues, Math. Mech. Solids. (2014) 1-24.
[14] P.G. Pavan, P. Pachera, C. Tiengo, A. Natali, Biomechanical behavior of pericardial human tissue: a constitutive formulation, Inst. Mech. Eng. H. J. Eng. Med. (2014) 926-934.
[15] K. Miller, Constitutive modelling of abdominal organs, J. Biomech. (2000) 367-373.
[16] Z. Gao, K. Lister, D.J. Desai, Constitutive Modeling of Liver Tissue: Experiment and Theory, Ann. Biomed. Eng. (2010) 505-516.
[17] D.Z. Veljkovic, V.J. Rankovic, S.B. Pantovic, M.A. Rosic, M.R. Kojic, Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models, Acta. Bioeng. Biomech. (2014) 37-45.
[18] R.W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Comput. mech. (2004) 484-502.
[19] H. Darijani, R. Naghdabadi, M.H. Kargarnovin, Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates, J. Mech. Eng. Sci. (2010) 591-602.
[20] R.W. Ogden, Nonlinear elastic deformation, Dover Publication, 1997.
[21] T. Belytschko, W.K. Liu, B. Moran, Nonlinear finite elements for continua and structures, John Wiley and Sons, LTD, 2000.
[22] H. Darijani, R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta. Mech. (2010) 235-254.
[23] M. Mansouri, H. Darijani, Constitutive modeling of isotropic hyperelastic material in an exponential framework using a self-contained approach, Int. J. Solids. Struct. (2014) 4316-4326.
[24] F.J. Carter, T.G. Frank, P.J. Davies, D. Mc Lean, A. Cuschieri, Measurements and modelling of the compliance of human and porcine, Med. Image. Ana. (2001) 231-236.
[25] M.W. Lai, E. Krempl, D. Ruben, Introduction to continuum mechanics, Elsevier. (2010).
[26] T. Beda, An approach for hyperelastic modelbuilding and parameters estimation a review of constitutive models, Eur. Polym. J. (2004) 97-108.
[27] A.S. Gendy, A.F. Saleeb, Nonlinear material parameter estimation for charcterizing hyperelastic large strain models, Comput. Mech. 25 (2000) 66-77.
[28] H. Hosseinzadeh, M. Ghoreishi, K. Narooei, Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone, J. Mech. Behav. Biomed. Mater. 59 (2016) 393-403.