Linear Numerical Stress Analysis of Concrete Specimens under Different Direct Tension Test Setups

Document Type : Original Research Paper


Civil Engineering Department, Kurdistan University, Sanandaj, Iran.


Tensile strength is one of the basic and important mechanical properties of concrete. The measurement of the tensile strength of concrete is not easy. This is because this property of concrete is dependent on the different test setups that must be used. Indirect methods have been used hitherto to measure tensile strength of concrete. These methods though widely accepted, do not provide the true tensile strength of concrete in comparison with direct methods. According to this, the present study focuses on the analytical and experimental investigation of the prismatic concrete specimens
under direct tension test setups. In this paper, different test setups were studied to produce a more uniform tensile stress distribution and minimize stress concentration at both ends of the concrete specimens with normal compressive strength. ABAQUS software was employed to carry out the finite element analysis of the concrete specimens under direct tension test setups.


[1] J.M. Raphael, Tensile strength of concrete, Aci. J., 81(2) (1984) 158-165.
[2] M.P. Luong, Tensile and shear strengths of concrete and rock, Eng. Fract. Mech., 35(1-3) (1990) 127-135.
[3] C. Rocco, G.V. Guinea, J. Planas, M. Elices, Review of the splitting-test standards from a fracture mechanics point of view, Cement. Concrete. Res., 31(1) (2001) 73-82.
[4] H. Schuler, C. Mayrhofer, K. Thoma, Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates, Int. J. Impact. Eng., 32(10) (2006) 1635-1650.
[5] D. Yan, G. Lin, Dynamic properties of concrete in direct tension, Cement. Concrete. Res., 36(7) (2006) 1371-1378.
[6] R.S. Olivito, F.A. Zuccarello, An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part. B-Eng., 41(3) (2010) 246-255.
[7] Y. Tian, S. Shi, K. Jia, S. Hu, Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion. Const. Build. Mater., 93 (2015) 1151-1156.
[8] M.W. Ibrahim, A.F. Hamzah, N. Jamaluddin, P.J. Ramadhansyah, A.M. Fadzil, Split tensile strength on self-compacting concrete containing coal bottom ash. Proc. Soc. Behv., 195 (2015) 2280-2289.
[9] R.V. Silva, J. De-Brito, R.K. Dhir, Tensile strength behaviour of recycled aggregate concrete. Const. Build. Mater., 83 (2015) 108-118.
[10] N.N. Gerges, C.A. Issa, S. Fawaz, Effect of construction joints on the splitting tensile strength of concrete. Case Studies in Construction Materials, 3 (2015) 83-91.
[11] ASTM, Standard test method for flexural strength of concrete (using simple beam with third-point loading), Am. Soc. Test. Mater. C., (2002) 78-102.
[12] ASTM, Standard test method for flexural strength of concrete (Using sample beam with center-point loading), Annual book of ASTM standards, Am. Soc. Test. Mater. C., (2003) 293-302.
[13] ASTM, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, C. (2004) 496/C 496M-04.
[14] C. Rocco, G.V. Guinea, J. Planas, M. Elices, Size effect and boundary conditions in the Brazilian test: experimental verification. Mater. Struct., 32(3) (1999) 210-217.
[15] C. Rocco, G.V. Guinea, J. Planas, M. Elices, Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater. Struct., 32(6) (1999) 437-444.
[16] W. Zheng, A.KH. Kwan, P.K.K. Lee, Direct tension test of concrete, Materials, 98(1) (2001) 63-71.
[17] V. Kadlecek, Z. Spetla, Direct tensile strength of concrete, Materials, 2(4) (1967) 749-767.
[18] F. Min, Z. Yao, T. Jiang, Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates. Scientific. World. J., 2014 (2014) 11 173531.
[19] S. Swaddiwudhipong, H.R. Lu, T.H. Wee, Direct tension test and tensile strain capacity of concrete at early age. Cement. Concrete. Res., 33(12) (2003) 2077-2084.
[20] F. Alhussainy, H.A. Hasan, S. Rogic, M.N. Sheikh, M.N. Hadi, Direct tensile testing of self-compacting concrete, Const. Build. Mater., 112 (2016) 903-906.
[21] H. Wu, Q. Zhang, F. Huang, Q. Jin, Experimental and numerical investigation on the dynamic tensile strength of concrete, Int. J. Impact. Eng., 32(1) (2005) 605-617.
[22] Y.B. Lu, Q.M. Li, About the dynamic uniaxial tensile strength of concrete-like materials, Int. J. Impact. Eng., 38(4) (2011) 171-180.
[23] A. Fahimifar, M. Malekpour, Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts, B. Eng. Geol. Environ., 71(2) (2012) 269-283.
[24] H.F. Gonnerman, E.C. Shuman, Compression, flexure and tension tests of plain concrete, Aci. J., 28(2) (1928) 527-564.
[25] M. Saito, Direct tensile fatigue of concrete by the use of friction grips, Aci. J., 80(5) (1983) 431-438.
[26] V.S. Gopalaratnam, S.P. Shah, Softening response of plain concrete in direct tension, Aci. J., 82(3) (1985) 310-323.
[27] X. Nianxiang, L. Wenyan, Determining tensile properties of mass concrete by direct tensile test, Materials, 86(3) (1989) 214-219.
[28] D.V. Phillips, Z. Binsheng, Direct tension tests on notched and un-notched plain concrete specimens. Mag. Concrete. Res., 45(162) (1993) 25-35.
[29] RILEM TC, Direct Tension of Concrete Specimens 1975 TC14-CPC, RILEM Technical Recommendations for the Testing and Use of Construction Materials, (1994) 23-24.
[30] U.S. Bureau of Reclamation, Procedure for Direct Tensile Strength, Static Modulus of Elasticity, and Poissons Ratio of Cylindrical Concrete Specimens in Tension (USBR 4914-92) Concrete Manual, Part 2, 9th Edition, U.S. Bureau of Reclamation, Denver, (1992) 726-731.
[31] ABAQUS Analysis Users Manual, Version 6.14-2, (2014) Dassault Systemes Simulia Corp. RI, USA.