[1] A.E. Green, K.A. Lindsay, Thermoelasticity, J. Elast., 2(1) (1972) 1-7.
[2] A.E. Green, P.M. Naghdi, A re-examination of the basic postulate of thermomechanics, Proceedings of the Royal Society of London, 432(1885) (1991) 171-194.
[3] J.J. Vadasz, S. Govender, P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations, Int. J. Heat. Mass. Trans., 48(13) (2005) 2673-2683.
[4] A. Miranville, R. Quintanilla, A generalization of the Caginalp phase - field system based on the Cattaneo law, Nonlinear. Anal. Theor., 71(5) (2009) 2278-2290.
[5] G.E. Spinosa-Paredes, E.G. Espinosa-Martinez, Fuel rod model based on non-Fourier heat conduction equation, Ann. Nucl. Energy, 36(5) (2009) 680-693.
[6] J.A. Lopez Molina, M.J. Rivera, M. Trujillo, E.J. Berjano, Effect of the thermal wave in radiofrequency ablation modelling: an analytical study, Phys. Med. Biol., 53(5) (2008) 1447-1462.
[7] H.H. Sherief, M.N. Anwar, A problem in generalized thermoelasticity for an infinitely long annular cylinder, Int. J. Eng. Sci., 26(3) (1988) 301-306.
[8] H.H. Sherief, M.N. Anwar, A problem in generalized thermoelasticity for an infinitely long annular cylinder composed of two different materials, Actamechanica, 80(1-2) (1989) 137-149.
[9] J.W. Fu, Z.T. Chen, L.F. Qian, Coupled thermoelastic analysis of a multi-layered hollow cylinder based on the C-T theory and its application on functionally graded materials, Compos. Struct., 131(1) (2015) 139-150.
[10] T. Darabseh, N. Yilmaz, M. Bataineh, Transient thermoelasticity analysis of functionally gradedthick hollow cylinder based on GreenLindsay model, Int. J. Mech. Mater. Des., 8 (2012) 247-255.
[11] R. Simpson, J. Trevelyan, Evaluation of J1 and J2 integrals for curved cracks using an enriched boundary element method, Eng. Fract. Mech., 78(4) (2011) 623-637.
[12] P. Hosseini-Tehrani, M.R. Eslami, S. Azari, Analysis of thermoelastic crack problems using GreenLindsay theory, J. Thermal. Stress., 29(4) (2006) 317-330.
[13] S.H. Mallik, M. Kanoria, A unified generalized thermoelasticity formulation: application to pennyshaped crack analysis, J. Thermal. Stress., 32(9) (2009) 943-965.
[14] X.B. Lin, R.A. Smith, Numerical analysis of fatigue growth of external Surface cracks in pressurized cylinders, Int. J. Pres. Ves. Pip., 71(3) (1997) 293-300.
[15] H.J. Petroski, J.D. Achenbach, Computation of the weight function from a stress intensity factor, Eng. Fract. Mech., 27(6) (1987) 697-715.
[16] A.R. Shahani, S. M. Nabavi, Closed-form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress, Int. J. Fatigue., 29(8) (2006) 926-933.
[17] S.M. Nabavi, A.R. Shahani, Thermal stress intensity factors for a cracked cylinder under transient thermal loading, Int. J. Pres. Ves. Pip., 86 (2009) 153-163.
[18] H.Y. Lee, Y.W. Kim, I. Yun, Stress intensity factor solution for radial and circumferential cracks in hollow cylinders using indirect boundary integral, Int. J. Pres. Ves. Pip., 69(1) (1996) 45-52.
[19] I.V. Varfolomeyev, L. Hodulak, Improved weight functions for infinitely long axial and circumferential cracks in a cylinder, Int. J. Pres. Ves. Pip., 70(2) (1197) 103-109.
[20] M.B. Nazari, O. Asemi, Stress intensity factor for a longitudinal semi-elliptical crack in a thickwalled cylinder under hyperbolic thermal loading, Modares Mechanical Engineering, 14(6) (2015) 143-151.
[21] R.B. Hetnarski, M.R. Eslami, Thermal Stresses: Advanced Theory and Applications, New York, Springer, (2009) 255-256.
[22] A. Bagri, M.R. Eslami,A unified generalized thermoelasticity; solution for cylinders and spheres, Int. J. Mech. Sci., 49(12) (2007) 13251335.
[23] H.F. Bueckner, principle for the computation of stress intensity factors, Zeitchrift fur Angewandte Math. Mech., 50(9) (1970) 129-146.
[24] J.R. Rice, Remarks on elastic crack-tip stress fields, Int. J. Solids. Struct., 8(6) (1972) 751-758.
[25] S.M. Nabavi, A.R. Shahani, Thermal stress intensity factors for a cracked cylinder under transient thermal loading, Int. J. Pres. Ves. Pip., 86(2) (2009) 153-163.
[26] K.Y. Lee, K.B. Sim, Thermal shock stress intensity factor by bueckners weight function method, Eng. Fract. Mech., 37(4) (1190) 779-804.
[27] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comput. Appl. Math., 10(1) (1984) 113-132.