Effect of Submerged Multi-pass Friction Stir Process on the Mechanical and Microstructural Properties of Al7075 Alloy

Document Type: Original Article


1 Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran.

2 Mechanical Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran.


The friction stir process (FSP) is a solid-state process which is used for severe plastic deformation of materials and modification in microstructure. The microstructure evolution, which iscaused by dynamic recrystallization, changes the mechanical properties of the material. In this study, the FSP of the surface of Al7075 alloy is carried out using 0% overlapping of passes. The FSP caused the non-uniform structure of the raw material with an average grain size of 18 micrometers to change into a uniform structure. This process refined the structure to the grain size of about 8.2 and 12.1 micrometersfor overlapped regions in water and air respectively. In order to study the mechanical properties, the tensile specimens were prepared in both parallel and perpendicular directions to the pin motion. Results showed an improvement in the yield stress, ultimate stress, and elongation of the specimens after FSP. Furtheremore, Vickers hardness of the overlapping specimens decreased compared to the raw materials after applying the FSP.


[1] A. Atrian, G.H. Majzoobi, S.H. Nourbakhsh, S.A. Galehdari, R. Masoudi Nejad, Evaluation of tensile strength of Al7075-SiC nanocomposite compacted by gas gun using spherical indentation test and neural networks, Adv. Powder. Technol., 27(4) (2016) 1821-1827.
[2] V.V. Patel, V. Badheka, A. Kumar, Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy, J. Mater. Process. Technol., 240 (2017) 68-76.
[3] Z.Y. Ma, S.R. Sharma, R.S. Mishra, Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminumsilicon alloy, Scripta Materialia, 54(9) (2006) 1623-1626.
[4] S. Gholami, E. Emadoddin, M. Tajally, E. Borhani, Friction stir processing of 7075 Al alloy and subsequent aging treatment, Trans. Nonferrous Met. Soc. China., 25(9) (2015) 2847-2855.
[5] M. Navaser, M. Atapour, Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy, J. Mater. Sci. Tech., 33(2) (2017) 155-165.
[6] A. Orozco-Caballero, M. lvarez-Leal, D. Verdera, P. Rey, O.A. Ruano, F. Carreo, Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-ZnMg-Cu alloy, Mater. Design., 125 (2017) 116-125.
[7] H.G. Rana, V.J. Badheka, A. Kumar, Fabrication of Al7075 / B4C Surface Composite by Novel Friction Stir Processing (FSP) and Investigation on Wear Properties, Procedia. Tech., 23 (2016) 519-528.
[8] Y. Wang, R.S. Mishra, Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloy, Mater. Sci. Eng. A., 463(1) (2007) 245-248.
[9] A. Azizi, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminum alloy joints, Modares Mech. Eng., 13(12) (2013) 56-66.
[10] A. Lotfi, S. nourouzi, The microstructure and mechanical properties of friction stir welded 7075-T6 aluminum alloy by the use of design of experiment, Modares Mech. Eng., 14(3) (2014) 17-26.
[11] A. Dutta, I. Charit, L.B. Johannes, R.S. Mishra, Deep cup forming by superplastic punch stretching of friction stir processed 7075 Al alloy, Mater. Sci. Eng. A., 395(1) (2005) 173-179.
[12] L.B. Johannes, R.S. Mishra, Multiple passes of friction stir  processing for the creation of superplastic 7075 aluminum, Mater. Sci. Eng. A., 464(1) (2007) 255-260.
[13] J.Q. Su, T.W. Nelson, C.J. Sterling, Friction stir processing of large-area bulk UFG aluminum alloys, Scripta Materialia, 52(2) (2005) 135-140.
[14] K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki,  Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing, Mater. Sci. Eng. A., 437(2) (2006) 274-280.
[15] F. Nascimento, T. Santos, P. Vila¸ ca, R.M. Miranda, L. Quintino, Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys, Mater. Sci. Eng. A., 506(1) (2009) 16-22.
[16] J. Gandra, R.M. Miranda, P. Vila¸ ca, Effect of overlapping direction in multipass friction stir processing, Mater. Sci. Eng. A., 528(16) (2011) 5592-5599.
[17] K.N. Ramesh, S. Pradeep, V. Pancholi, Multipass friction-stir processing and its effect on mechanical properties of aluminum alloy 5086, Metall. Mater. Trans. A., 43(11) (2012) 4311-4319.
[18] S. Pradeep, V. Pancholi, Effect of microstructural inhomogeneity on superplastic behaviour of multipass friction stir processed aluminium alloy, Mater. Sci. Eng. A., 561 (2013) 78-87.
[19] D.R. Ni, P. Xue, Z.Y. Ma, Effect of multiple-pass friction stir processing overlapping on microstructure and mechanical properties of as-Cast NiAl Bronze, Metall. Mater. Trans. A., 42(8) (2011) 2125-2135.
[20] J.H. Cho, S.H. Han, C.G. Lee, Cooling effect on microstructure and mechanical properties during friction stir welding of Al-MgSi aluminum alloys, Mater. Lett., 180 (2016) 157-161.
[21] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints, Mater. Design., 32(2) (2011) 535-549.
[22] T.S. Rao, G.M. Reddy, S.R.K. Rao, Investigation on variations in hardness and microstructure of in-process cooled 7075 aluminum alloy friction stir welds, Mater. Test., 59(2) (2017) 155-160.
[23] G. Venkateswarlu, D. Devaraju, M.J. Davidson, B. Kotiveerachari, G.R.N. Tagore, Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy, Mater. Design. 45 (2013) 480-486.