A Numerical Study on the Residual Stress Measurement Accuracy Using Inverse Eigenstrain Method

Document Type: Original Article

Authors

Mechanical Engineering Department, University of Kashan, Kashan, Iran.

Abstract

Investigation of residual stresses is of crucial importance due to their effect on the performance of engineering components. Recently, inverse methods have been developed for determination of the residual stresses. Inverse eigenstrain method is one of the mentioned inverse methods. The inverse eigenstrain method, which is based on the eigenstrain theory, uses limited measurements of residual elastic strains obtained from the experimental tests. In this study, effective parameters on result accuracy obtained from the 2D inverse eigenstrain method in residual stresses measurement were investigated using numerical experiment. The results indicated that in the inverse eigenstrain method the accuracy of the results increases with increasing the basis functions order and the number of the points where  displacement is measured. Additionally, the result accuracy increases selecting the appropriate basis functions. Moreover, in this paper the inverse eigenstrain method was applied for an actual part. The results showed that in the real conditions too, accurate results can be obtained by selecting the appropriate parameters of the inverse eigenstrain method.

Keywords


[1] G.S. Schajer, Practical Residual Stress Measurement Methods, John Wiley & Sons, New York, 2013.
[2] M. Sedighi, M. Honarpisheh, Investigation of cold rolling influence on near surface residual stress distribution in explosive welded multilayer, Strength. Mater., 44(6) (2012) 693-698.
[3] M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosive welded Al-Cu-Al multilayer, Mater. Design., 37 (2012) 577- 581.
[4] M.B. Prime, Cross-sectional mapping of residual stress by measuring the surface contour after a cut, J. Eng. Mat. Tech., 123 (2001) 162-168.
[5] I. Alinaghian1, M. Honarpisheh, S. Amini, The influence of bending mode ultrasonic-assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and macrostructure, Int. J. Adv. Manuf. Tech. 95 (5-8) (2018) 2757-2766.
[6] M. Kotobi, M. Honarpisheh. Experimental and numerical investigation of through-thickness residual stress of laser-bent Ti samples, J. Strain. Ana., 52(6) (2017) 347-355.
[7] M. Kotobi, M. Honarpisheh, Uncertainty analysis of residual stresses measured by slitting method in equal-channel angular rolled Al-1060 strips, J. Strain. Ana., 52(2) (2017) 83-92.
[8] M. Honarpisheh, E. Haghighat, M. Kotobi, Investigation of residual stress and mechanical properties of equal channel angular rolled St12 strips, P. I. Mech. Eng. L. J. Mat., (2016) 1-11, https://doi.org/10.1177/1464420716652436.
[9] M. Kotobi, M. Honarpisheh, Through-depth residual stress measurement of laser bent steel-titanium bimetal sheets, J. Strain. Ana., 53(3) (2018) 130-140.
[10] M. Moazzam, M. Honarpisheh, Residual stresses measurement in UIC 60 rail by ring-core method and sectioning technique, A. J. Mech. Eng., (2017) https://doi.org/10.22060/mej.2017.12879.5457.
[11] T.S. Jun, A.M. Korsunsky, Evaluation of residual stresses and strains using the eigenstrain reconstruction method, Int. J. Solid. Struct., 47 (2010) 1678-1686.
[12] S.A. Faghidian, A smoothed inverse eigenstrain method for reconstruction of the regularized residual fields, Int. J. Solid. Struct., 25 (2014) 4427-4434.
[13] M.R. Hill, Determination of residual stress based on the estimation of eigenstrain, Ph.D. Dissertation, Stanford University, (1996).
[14] A.M. Korsunsky, On the modeling of residual stresses due to surface peening using eigenstrain distributions, J. Strain. Ana., 40(8) (2005) 817-824.
[15] A.M. Korsunsky, Variational eigenstrain analysis of synchrotron diffraction measurements of residual elastic strain in a bent titanium alloy bar, J. Mech. Mater. Struct., 1(2) (2006) 259-277.
[16] A.T. DeWald, M.R. Hill, Multi-axial contour method for mapping residual stresses in continuously processed bodies, J. Exp. Mech., 46 (2006) 473-490.
[17] A.M. Korsunsky, G.M. Regino, D. Nowell, Variational eigenstrain analysis of residual stresses in a welded plate, Int. J. Solid. Struct., 44 (2007) 4574-4591.
[18] T.S. Jun, A.M. Venter, C.P. la Grange, F. Hofmann, J. Belnoue, P.R. van Heerden, A. Evans, A.M. Korsunsky, Eigenstrain analysis of nonuniformly shaped shot-peened samples, J. Procedia. Eng., 1 (2009) 151-154.
[19] X. Song, W.C. Liu, J.P. Belnoue, J. Dong, G.H. Wu, W.J. Ding, S.A.J. Kimber, T. Buslaps, A.J.G. Lunt, A.M. Korsunsky, An eigenstrain-based finite element model and the evolution of shot peening residual stresses during fatigue of GW103 magnesium alloy, Int. J. Fatigue., 42 (2012) 284-295.
[20] W.D. Musinski, D.L. McDowell, On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy specimens, Int. J. Mech. Sci., 100 (2015) 195-208.
[21] H.T. Luckhoo, T-S. Jun, A.M. Korsunsky, Inverse eigenstrain analysis of residual stresses in friction stir welds, J. Procedia. Eng., 1 (2009) 213-216.
[22] T-S. Jun, K. Dragnevski, A.M. Korsunsky, Microstructure, residual strain, and eigenstrain analysis of dissimilar friction stir welds, J. Mat. Des., 31 (2010) S121-S125.
[23] X. Song, I. Kyriakogloub, A.M. Korsunsky, Analysis of residual stresses around welds in a combustion casing, J. Procedia. Eng., 1 (2009) 189-192.
[24] M. Achinth, D. Nowell, Eigenstrain modelling of residual stresses generated by arrays of LSP shots, J. Procedia. Eng., 10 (2011) 1327-1332.
[25] M. Achinth, D. Nowell, K. Shapiro, P.J. Withers, Eigenstrain modelling of residual stress generated by arrays of Laser Shock Peeing shots and determination of the complete stress field using limited strain measurements, J. Surf. Coat. Tech., 216 (2012) 68-77.
[26] S. Coratella, M. Sticchi, M.B. Toparli, M.E. Fitzpatrick, N. Kashaev, Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples, J. Surf. Coat. Tech., 273 (2015) 39-49.
[27] M.E. Kartal, F.P.E. Dunne, A.J. Wilkinson, Determination of the complete microscale residual stress tensor at a subsurface carbide particle in a single-crystal superalloy from free-surface EBSD, J. Acta. Mater., 60 (2012) 5300-5310.
[28] M.E. Kartal, R. Kiwanuka, F.P.E. Dunne, Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis, Int. J. Solid. Struct., 67 (2015) 27-39.
[29] M.E. Kartal, Y.H. Kang, A.M. Korsunsky, A.C.F. Cocks, J.P. Bouchard, The Influence of welding procedure and plate geometry on residual stresses in thick components, Int. J. Solid. Struct., 80 (2015) 420-429.
[30] M. Ogawa, T. Ishii, Evaluation of the threedimensional welding residual stresses based on the eigenstran methodology via X-ray measurements, J. Mat. Res. Proc., 2 (2016) 329-334.
[31] M.P. Fransen, Eigenstrain reconstruction of residual stresses induced by selective laser melting, MSc Thesis, Delft University, 2016.