The Analysis of Light-duty Truck Diesel Engine Crankshaft Failure

Document Type : Original Research Paper


Mechanical Engineering Department, Faculty of Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran.


In this study, crankshaft failure of four-cylinder light-duty truck diesel engine was examined. The failure occurred by fatigue crack growth which was initiated from a surface defect after about 95000 km on the second crankpin from the crankpin-web fillet where the stress concentration was at the highest level. To evaluate the mechanical properties, some hardness and tensile tests were conducted and spectrometry analysis was used for studying the chemical composition of the crankshaft material. Additionally, for considering and evaluating the microstructure, microcracks, fracture surface, and the cause of failure, optical microscopy (OM) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) were used. The morphology of the fracture surface showed a smooth and flat crack initiation with the beach marks and ratchet marks and second crack propagation zone with beach marks and fast final fracture zone near the end. The results of EDS observations indicated that inclusions of non-metallic aren’t distributed throughout on the steel and in some places leads to the formation of the microcrack clusters.


[1] E. Herz, R. Thumser, J.W. Bergmann, M. Vormwald, Endurance limit of autofrettaged Diesel-engine injection tubes with defects, Eng. Fra. Mec., 73 (2006) 3-21.
[2] K.M. Kockelman, Y. Zhao, Behavioral Distinctions: The Use of Light-Duty Trucks and Passenger Cars, J. Trans. and Sta., 3(3) (2000) 47-60.
[3] B. Dondlinger, Chapter 16: Cranktrain (Crankshafts, Connecting Rods, and Flywheel), 23448052/ Chapter 16 Cranktrain Crankshafts Connecting Rods and Flywheel, 2015, (accessed 08.04.15).
[4] M. Fonte, P. Duarte, V. Anes, M. Freitas, L. Reis, On the assessment of fatigue life of marine diesel engine crankshafts, Eng. Fail. Anal., 56 (2015) 51-57.
[5] R. Bosch GmbH, Automotive Handbook, 9th Edition, Wiley, (2015).
[6] M. Fonte, M. Freitas, Semi-elliptical fatigue crack growth under rotating or reversed bending combined with steady torsion, Fatigue Fract. Eng. Mater. Struct., 20(6) (1997) 895-906.
[7] M. Fonte, P. Duarte, L. Reis, M. Freitas, V. Infante, Failure mode analysis of two crankshafts of a single cylinder diesel engine, Eng. Fail. Anal., (2015), http://doi: 10.1016/j.engfailanal.2015.02.014.
[8] M. Fonte, V. Infanteb, M. Freitas, L. Reisb, Failure mode analysis of two diesel engine crankshafts, Procedia Structural Integrity, 1 (2016) 313-318.
[9] M. Fonte, B. Li, L. Reis, M. Freitas, Crankshaft failure analysis of a motor vehicle, Eng. Fail. Anal., 35 (2013) 147-152.
[10] M.A. Alfares, A.H. Falah, A.H. Elkholy, Failure analysis of a vehicle engine crankshaft, J. Fail. Anal. Preven., 7 (2007) 12-17.
[11] G.H. Farrahi, F. Hemmati, S.M. H-Gangaraj, M. Sakhaei, S. Abolhassani, Failure analysis of a four cylinder diesel engine crankshaft made from nodular cast Iron, J. Eng. Res., (2011) 21-27.
[12] F.S. Silva, Analysis of a vehicle crankshaft failure, Eng. Fail. Anal., 10 (2003) 605-616.
[13] J.A. Becerra, F.J. Jimenez, M. Torres, D.T. Sanchez, E. Carvajal, Failure analysis of reciprocating compressor crankshafts, Eng. Fail. Anal., 18 (2011) 735-746.
[14] R.K. Pandey, Failure of diesel-engine crankshafts, Eng. Fail. Anal., 10 (2003) 165-175.
[15] M. Fonte, V. Anes, P. Duarte, L. Reis, M. Freitas, Crankshaft failure analysis of a boxer diesel motor, Eng. Fail. Anal., 56 (2015) 109-115.
[16] S. Khatri, D. Kharade, K. Varpe, Review on optimization of crankshaft, Int. J. Adva. Tech. Eng. Sci. (ijates), 4(3) (2016) 339-350.
[17] Q. Zhang, Z. Zuo, J. Liu, Failure analysis of a diesel engine cylinder head based on finite element method, Eng. Fail. Anal., 34 (2013) 51-58.
[18] C. Kilicaslan, U. Ince, Failure analysis of cold forged 37Cr4 alloy M10x28 bolts, Eng. Fail. Anal., 70 (2016) 177-187.
[19] K. Aliakbari, KH. Farhangdoost, Plastic deformation influence on material properties of autofrettaged tubes used in diesel engines injection system, J. Press. Ves. Tech., 136 (2014) 136 / 041402-1.
[20] J.H. Bulloch, A.G. Callagy, Assessment of a premature failure in a gas turbine part, Eng. Fail. Anal., 7 (2000) 411-426.
[21] A. Vazdirvanidis, G. Pantazopoulos, A. Louvaris, Failure analysis of a hardened and tempered structural steel (42CrMo4) bar for automotive applications, Eng. Fail. Anal., 16 (2009) 1033-1038.
[22] ASM Metals Hand Book Volume 12 - Fractography. Second printing, May 1992.
[23] V. Infante, J.M. Silva, M.A. Silvestre, R. Baptista, Failure of a crankshaft of an aeroengine: A contribution for an accident investigation, Eng. Fail. Anal., 35 (2013) 286-293.
[24] T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, K.V. Grigorovich, The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions, Corros. Sci., 80 (2014) 299-308.