Evaluation of Bond Strength of Reinforcement in Concrete Containing Fibers, Micro-silica and Nano-silica

Document Type: Original Article


Civil Engineering Department, Hakim Sabzevari University, Sabzevar, Iran.


The present study analyzes the bond stress in steel reinforcements embedded in concrete containing polymer fibers, micro- and nano-silica particles. For this purpose, 36 cylindrical (with a diameter of 10cm and height of 15cm) and
36 cubic (10 × 10 × 10cm) specimens containing different contents of additives and three types of cement strength grade (i.e. 32.5, 42.5 and 52.5MPa) were constructed and subjected to pull-out and compressive strength tests, respectively. The experimental observations were then compared to previously proposed models available in the literature. The results indicated that microand nano-silica particles, compared to fibers, had more impacts on improving the reinforcement-concrete bond strength. Moreover, the highest bond strength was observed for the specimen containing equal content of microand nano-silica particles. An acceptable agreement was also obtained between the results of current study and previous models, highlighting the capability of the proposed models in prediction of the actual behavior of such specimens.


[1] H. Eskandari, A. Madadi, Investigation of ferrocement channels using experimental and finite element analysis, Int. J. Eng. Sci.Tech., 18(4) (2015) 769-775.
[2] A. Madadi, H. Eskandari-Naddaf, R. Shadnia, L. Zhang, Characterization of ferrocement slab panels containing lightweight expanded clay aggregate using digital image correlation technique, Const. Build. Mater., 180 (2018) 464-476.
[3] H.Ş. Arel, Ş. Yazichi, Concrete-reinforcement bond in different concrete classes, Constr. Build. Mater., 36 (2012) 78-83.
[4] A.F. Bingöl, R. Gül, Residual bond strength between steel bars and concrete after elevated temperatures, Fire. Saf. J., 44(6) (2009) 854-859.
[5] K.M.A. Hossain, M. Lachemi, Bond behavior of self-consolidating concrete with mineral and chemical admixtures, J. Mater. Civil. Eng., 20(9) (2008) 608-616.
[6] S. Tastani, S. Pantazopoulou, Experimental evaluation of the direct tension-pullout bond test, International Symposium Bond in Concrete-from research to standard, Budapest, (2002).
[7] D. Darwin, M.L. Tholen, E.K. Idun, J. Zuo, Splice strength of high relative rib area reinforcing bars, ACI Struct. J., 93(1) (1996) 95-107.
[8] M.R. Esfahani, M.R. Kianoush, Development/splice length of reinforcing bars, ACI Struct. J., 102(1) (2005) 22-30.
[9] P.M. Ferguson, R.D. Turpin, J.N. Thompson, Minimum bar spacing as a function of bond and shear strength, ACI J. Proc., 50(10) (1954) 869-887.
[10] P.M. Ferguson, J.E. Breen, J.N. Thompson, Pullout tests on high strength reinforcing bars, ACI J. Proc., 62(8) 1965 933-950.
[11] H.H. Abrishami, D. Mitchell, Analysis of bond stress distributions in pull-out specimens, J. Struc. Eng., 122(3) (1996) 255-261.
[12] S. Viwathanatepa, E. Popov, V. Bertero, Effects of generalized loadings on bond of reinforcing bars embedded in well confined concrete, Report no. EERC 79/22, Earthquake Engineering Center Berkeley, (1979).
[13] P. Soroushian, K.B. Choi, Local bond of deformed bars with different diameters in confined concrete, ACI Struc. J., 86(2) (1989) 217-222.
[14] J. Zuo, D. Darwin, Splice strength of conventional and high relative rib area bars in normal and highstrength concrete, ACI Struc. J., 97(4) (2000) 630-641.
[15] P.K. Mehta, P.J. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education Education New York, (2006).
[16] H. Eskandari-Naddaf, A. Ziaei-Nia, Simultaneous effect of nano and micro silica on corrosion behaviour of reinforcement in concrete containing cement strength grade of C-525, Proc. Manuf., 22 (2018) 399-405.
[17] A. Dunster, Silica fume in concrete, Information Paper NIP 5/09, IHS BRE Press, Garston, UK, (2009).
[18] R. Siddique, Utilization of silica fume in concrete: Review of hardened properties, Resour. Conserv. Recycl., 55(11) (2011) 923-932.
[19] M. Nili, A. Ehsani, K. Shabani, Influence of nanoSiO2 and micro-silica on concrete performance, Proceedings Second International Conference on Sustainable Construction Materials and Technologies, Ancona, (2010) 1-8.
[20] G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement. Concrete. Res., 34(6) (2004) 1043-1049.
[21] T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nanoSiO2, Cement. Concrete. Res., 35(10) (2005) 1943-1947.
[22] H. Eskandari, A.M. Nic, A. Ghanei, Effect of air entraining admixture on corrosion of reinforced concrete, Proc. Eng., 150 (2016) 2178-2184.
[23] A. Ziaei-Nia, G.R. Tadayonfar, H. EskandariNaddaf, Dynamic cost optimization method of concrete mix design, Materials Today: Proceedings., 5(2) (2018) 4669-4677.
[24] R. Lameiras, J. Barros, I.B. Valente, M. Azenha, Development of sandwich panels combining fibre reinforced concrete layers and fibre reinforced polymer connectors. Part I: Conception and pull-out tests, Compos. Struct., 105 (2013) 446-459.
[25] S.G. Nunes, L.V.D. Silva, S.C. Amico, J.D. Viana, F.D.R. Amado, Study of composites produced with recovered polypropylene and piassava fiber, Mater. Res., 20(1) (2017) 144-150.
[26] C. Orangun, J. Jirsa, J. Breen, A Reevaulation of test data on development length and splices, ACI J. Proc., ACI, 74(3) (1977) 114-122.
[27] E. Kemp, W. Wilhelm, Investigation of the parameters influencing bond cracking, ACI J. Proc., 76(1) (1979) 47-71.
[28] E.L. Kemp, Bond in reinforced concrete: behavior and design criteria, ACI J. Proc., 83 (1986) 50-57.
[29] R.A. Chapman, S.P. Shah, Early-age bond strength in reinforced concrete, ACI Mater. J., 84(6) (1987) 501-510.
[30] S.U. Pillai, D.W. Kirk, M.A. Erki, Reinforced concrete design, McGraw-Hill Ryerson, (1988).
[31] M. Harajli, Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete, ACI. Struct. J., 91(5) (1994) 511-520.
[32] S. Bae, Mix design, formwork pressure and bond characteristics of special self-consolidating concrete, Master Thesis, Ryerson University, (2006).
[33] C.E.I. du Béton, CEB-FIP model code 2010, first completed draft, Comité Euro-International du Béton, Lausanne, Switzerland, (2010).
[34] A. Madadi, H. Eskandari-Naddaf, M. GharouniNik, Lightweight ferrocement matrix compressive behavior: experiments versus finite element analysis, Arab. J. Sci. Eng., 42(9) (2017) 4001-4013.
[35] M. Ghaemi-Fard, H. Eskandari-Naddaf, G.R. Ebrahimi, Genetic prediction of cement mortar mechanical properties with different cement strength class after freezing and thawing cycles, Struct. Conc., 19(5) (2018) 1341-1352.
[36] S. Akkurt, S. Ozdemir, G. Tayfur, B. Akyol, The use of GA-ANNs in the modelling of compressive strength of cement mortar, Cement. Concrete. Res., 33(7) (2003) 973-979.
[37] H. Eskandari-Naddaf, R. Kazemi, ANN prediction of cement mortar compressive strength, influence of cement strength class, Const. Build. Mater., 138 (2017) 1-11.
[38] S. Mahdinia, H. Eskandari-Naddaf, R. Shadnia, Effect of Main Factors on Fracture Mode of Mortar, A Graphical Study, Civ. Eng. J., 3(10) (2017) 897-903.
[39] H. Eskandari-Naddaf, M. Azimi-Pour, Performance evaluation of dry-pressed concrete curbs with variable cement grades by using Taguchi method, Ain. Shams. Eng. J., (2016) doi.org/1001016/j.asej.2016.090004.
[40] H. Eskandari-Naddaf, R. Kazemi, Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5MPa, Proc. Manuf., 22 (2018) 392-398.
[41] T. Korouzhdeh, H. Eskandari-Naddaf, M. Gharouni-Nik, An improved ant colony model for cost optimization of composite beams, Appl. Artif. Intell., 31(1) (2017) 44-63.