[1] H. Eskandari, A. Madadi, Investigation of ferrocement channels using experimental and finite element analysis, Int. J. Eng. Sci.Tech., 18(4) (2015) 769-775.
[2] A. Madadi, H. Eskandari-Naddaf, R. Shadnia, L. Zhang, Characterization of ferrocement slab panels containing lightweight expanded clay aggregate using digital image correlation technique, Const. Build. Mater., 180 (2018) 464-476.
[3] H.Ş. Arel, Ş. Yazichi, Concrete-reinforcement bond in different concrete classes, Constr. Build. Mater., 36 (2012) 78-83.
[4] A.F. Bingöl, R. Gül, Residual bond strength between steel bars and concrete after elevated temperatures, Fire. Saf. J., 44(6) (2009) 854-859.
[5] K.M.A. Hossain, M. Lachemi, Bond behavior of self-consolidating concrete with mineral and chemical admixtures, J. Mater. Civil. Eng., 20(9) (2008) 608-616.
[6] S. Tastani, S. Pantazopoulou, Experimental evaluation of the direct tension-pullout bond test, International Symposium Bond in Concrete-from research to standard, Budapest, (2002).
[7] D. Darwin, M.L. Tholen, E.K. Idun, J. Zuo, Splice strength of high relative rib area reinforcing bars, ACI Struct. J., 93(1) (1996) 95-107.
[8] M.R. Esfahani, M.R. Kianoush, Development/splice length of reinforcing bars, ACI Struct. J., 102(1) (2005) 22-30.
[9] P.M. Ferguson, R.D. Turpin, J.N. Thompson, Minimum bar spacing as a function of bond and shear strength, ACI J. Proc., 50(10) (1954) 869-887.
[10] P.M. Ferguson, J.E. Breen, J.N. Thompson, Pullout tests on high strength reinforcing bars, ACI J. Proc., 62(8) 1965 933-950.
[11] H.H. Abrishami, D. Mitchell, Analysis of bond stress distributions in pull-out specimens, J. Struc. Eng., 122(3) (1996) 255-261.
[12] S. Viwathanatepa, E. Popov, V. Bertero, Effects of generalized loadings on bond of reinforcing bars embedded in well confined concrete, Report no. EERC 79/22, Earthquake Engineering Center Berkeley, (1979).
[13] P. Soroushian, K.B. Choi, Local bond of deformed bars with different diameters in confined concrete, ACI Struc. J., 86(2) (1989) 217-222.
[14] J. Zuo, D. Darwin, Splice strength of conventional and high relative rib area bars in normal and highstrength concrete, ACI Struc. J., 97(4) (2000) 630-641.
[15] P.K. Mehta, P.J. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education Education New York, (2006).
[16] H. Eskandari-Naddaf, A. Ziaei-Nia, Simultaneous effect of nano and micro silica on corrosion behaviour of reinforcement in concrete containing cement strength grade of C-525, Proc. Manuf., 22 (2018) 399-405.
[17] A. Dunster, Silica fume in concrete, Information Paper NIP 5/09, IHS BRE Press, Garston, UK, (2009).
[18] R. Siddique, Utilization of silica fume in concrete: Review of hardened properties, Resour. Conserv. Recycl., 55(11) (2011) 923-932.
[19] M. Nili, A. Ehsani, K. Shabani, Influence of nanoSiO2 and micro-silica on concrete performance, Proceedings Second International Conference on Sustainable Construction Materials and Technologies, Ancona, (2010) 1-8.
[20] G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement. Concrete. Res., 34(6) (2004) 1043-1049.
[21] T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nanoSiO2, Cement. Concrete. Res., 35(10) (2005) 1943-1947.
[22] H. Eskandari, A.M. Nic, A. Ghanei, Effect of air entraining admixture on corrosion of reinforced concrete, Proc. Eng., 150 (2016) 2178-2184.
[23] A. Ziaei-Nia, G.R. Tadayonfar, H. EskandariNaddaf, Dynamic cost optimization method of concrete mix design, Materials Today: Proceedings., 5(2) (2018) 4669-4677.
[24] R. Lameiras, J. Barros, I.B. Valente, M. Azenha, Development of sandwich panels combining fibre reinforced concrete layers and fibre reinforced polymer connectors. Part I: Conception and pull-out tests, Compos. Struct., 105 (2013) 446-459.
[25] S.G. Nunes, L.V.D. Silva, S.C. Amico, J.D. Viana, F.D.R. Amado, Study of composites produced with recovered polypropylene and piassava fiber, Mater. Res., 20(1) (2017) 144-150.
[26] C. Orangun, J. Jirsa, J. Breen, A Reevaulation of test data on development length and splices, ACI J. Proc., ACI, 74(3) (1977) 114-122.
[27] E. Kemp, W. Wilhelm, Investigation of the parameters influencing bond cracking, ACI J. Proc., 76(1) (1979) 47-71.
[28] E.L. Kemp, Bond in reinforced concrete: behavior and design criteria, ACI J. Proc., 83 (1986) 50-57.
[29] R.A. Chapman, S.P. Shah, Early-age bond strength in reinforced concrete, ACI Mater. J., 84(6) (1987) 501-510.
[30] S.U. Pillai, D.W. Kirk, M.A. Erki, Reinforced concrete design, McGraw-Hill Ryerson, (1988).
[31] M. Harajli, Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete, ACI. Struct. J., 91(5) (1994) 511-520.
[32] S. Bae, Mix design, formwork pressure and bond characteristics of special self-consolidating concrete, Master Thesis, Ryerson University, (2006).
[33] C.E.I. du Béton, CEB-FIP model code 2010, first completed draft, Comité Euro-International du Béton, Lausanne, Switzerland, (2010).
[34] A. Madadi, H. Eskandari-Naddaf, M. GharouniNik, Lightweight ferrocement matrix compressive behavior: experiments versus finite element analysis, Arab. J. Sci. Eng., 42(9) (2017) 4001-4013.
[35] M. Ghaemi-Fard, H. Eskandari-Naddaf, G.R. Ebrahimi, Genetic prediction of cement mortar mechanical properties with different cement strength class after freezing and thawing cycles, Struct. Conc., 19(5) (2018) 1341-1352.
[36] S. Akkurt, S. Ozdemir, G. Tayfur, B. Akyol, The use of GA-ANNs in the modelling of compressive strength of cement mortar, Cement. Concrete. Res., 33(7) (2003) 973-979.
[37] H. Eskandari-Naddaf, R. Kazemi, ANN prediction of cement mortar compressive strength, influence of cement strength class, Const. Build. Mater., 138 (2017) 1-11.
[38] S. Mahdinia, H. Eskandari-Naddaf, R. Shadnia, Effect of Main Factors on Fracture Mode of Mortar, A Graphical Study, Civ. Eng. J., 3(10) (2017) 897-903.
[39] H. Eskandari-Naddaf, M. Azimi-Pour, Performance evaluation of dry-pressed concrete curbs with variable cement grades by using Taguchi method, Ain. Shams. Eng. J., (2016) doi.org/1001016/j.asej.2016.090004.
[40] H. Eskandari-Naddaf, R. Kazemi, Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5MPa, Proc. Manuf., 22 (2018) 392-398.
[41] T. Korouzhdeh, H. Eskandari-Naddaf, M. Gharouni-Nik, An improved ant colony model for cost optimization of composite beams, Appl. Artif. Intell., 31(1) (2017) 44-63.