[1] M.W. Sayers, T.D. Gillespie, C.A.V. Queiroz, The International Road Roughness Experiment, The International Bank for Reconstruction and development, Washington, (1986).
[2] M.W. Sayers, T.D. Gillespie, W.D.O. Paterson, Guidelines for Conducting and Calibrating Road Roughness Measurements, The International Bank for Reconstruction and Development, Washington, (1986).
[3] M.W. Sayers, S.M. Karamihas, Interpretation of Road Roughness Profile Data, Prepared for Federal Highway Administration Contract DTFH 61-92-C00143, (1996).
[4] A. Gonzalez, E.J. Óbrien, Y. Li, K. Cashell, The use of vehicle acceleration measurements to estimate road roughness, Vehicle. Sys. Dyn., 46(6) (2008) 483-499.
[5] P. Johannesson, I. Rychlik, Modelling of road profiles using roughness indicators, Int. J. Veh. Des., 66 (2014) 317-346.
[6] P. Kumar, E. Angelats, An Automated Road Roughness Detection from Mobile Laser Scanning Data, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop, Hannover, Germany, 6-9 June (2017).
[7] R. Kumar, A. Mukherjee, V.P. Singh, Community sensor network for monitoring road roughness using smartphones, J. Comput. Civil. Eng., 31(3) (2017) 04016059-1-110.
[8] M. Choi, M. Kim, G. Kim, S. Kim, S.C. Park, S. Lee, 3D scanning technique for obtaining road surface and its applications, Int. J. Pr. Eng. Manuf., 18(3) (2017) 367-373.
[9] K. Reza Kashyzadeh, M.J. Ostad-Ahmad-Ghorabi, A. Arghavan, Study effects of vehicle velocity on a road surface roughness simulation, Appl. Mech. Mater., 372 (2013) 650-656.
[10] R.S. Barbosa, Vehicle dynamic response due to pavement roughness, J. Braz. Soc. Mech. Sci. Eng., 30(3) (2011) 302-307.
[11] B. GoenagaSilvera, L.G. Fuentes, O. Mora, Effect of Road Roughness and Vehicle Speed on Dynamic Load Prediction and Pavement Performance Reduction, Transportation Research Board 96th Annual Meeting, Washington DC, United States, 8-12 January (2017).
[12] G. Alessandroni, A. Carini, E. Lattanzi, V. Freschi, A. Bogliolo, A Study on the Influence of Speed on Road Roughness Sensing: The Smart Road Sense Case, Sens., 17(2) (2017) 305-325.
[13] G. Triantafyllidis, A. Antonopoulos, A. Spiliotis, S. Fedonos, D. Repanis, Fracture characteristics of fatigue failure of a vehicle’s ductile iron steering knuckle, J. Fail. Anal. Prev., 9(4) (2009) 323-328.
[14] V. Sivananth, S. Vijayarangan, Fatigue life analysis and optimization of a passenger car steering knuckle under operating conditions, Int. J. Auto. Mech. Eng., 11(1) (2015) 2417-2429.
[15] E. Azrulhisham, Y. Asri, A. Dzuraidah, N. Abdullah, C. Hassan, A. Shahrom, Evaluation of fatigue life reliability of steering knuckle using Pearson parametric distribution model, Int. J. Qual. Stat. Reliab., 2010 (2010) 1-8.
[16] R. Vivekananda, A.V. Mythra Varun, Finite element analysis and optimization of the design of steering knuckle, Int. J. Eng. Res., 4(1) (2016) 121-135.
[17] K.S. Bhokare, G.M. Kakandikar, S.S. Kulkarni, Predicting the fatigue of steering knuckle arm of a sport utility vehicle while developing analytical techniques using CAE, Int. J. Sci. Res. Manag. Std., 1(11) (2013) 372-381.
[18] G.H. Farrahi, A. Khalaj, Estimation of fatigue damage caused by actual roads and maneuvers on proving ground, J. Achiev. Mater. Manuf. Eng., 14(1-2) (2006) 90-96.
[19] M. Shariyat, A fatigue model developed by modification of Gough’s theory, for random non-proportional loading conditions and threedimensional stress fields, Int. J. Fatigue., 30(7) (2008) 1248-1258.
[20] M. Shariyat, Three energy‐based multiaxial HCF criteria for fatigue life determination in components under random non‐proportional stress fields, Fatigue. Fract. Eng. Mater. Struct., 32(10) (2009) 785-808.
[21] M. Shariyat, New multiaxial HCF criteria based on instantaneous fatigue damage tracing in components with complicated geometries and random non-proportional loading conditions, Int. J. Damage Mech., 19(6) (2009) 659-690.
[22] M. Zoroufi, A. Fatemi, Durability Comparison and Life Predictions of Competing Manufacturing Processes: An Experimental Study of Steering Knuckle,the 25th Forging Industry Technical Conference, Detroit, (2004).
[23] A. Fatemi, M. Zoroufi, Fatigue Performance Evaluation of Forged versus Competing Manufacturing Process Technologies: A Comparative Analytical and Experimental Study, American Iron and Steel Institute, Toledo, (2004).
[24] M. Zoroufi, A. Fatemi, Experimental durability assessment and life prediction of vehicle suspension components: a case study of steering knuckles, Proc. Inst. Mech. Eng. D J. Automob. Eng., 220(11) (2006) 1565-1579.
[25] C.G.E. Schon, C.M. Angelo, F.A.C.E. Machado, The role of tire size over the fatigue damage accumulation in vehicle bodies, 20th European Conference on Fracture, Procedia Mater. Sci., 3 (2014) 331-336.
[26] C.M. Angelo, F.A.C.E. Machado, C.G.E. Schon, Influence of tire sizes over automobile body spectrum loads and fatigue damage accumulation, Mater. Des., 67 (2015) 385-389.
[27] J.Y. Wong, Theory of ground vehicle book, Third Edition, University of Ottawa, Wiley Interscience (2001).
[28] J. Marzbanrad, A. Hoseinpour, Structural optimization of MacPherson control arm under fatigue loading, Teh. Vjesn., 24(3) (2017) 917-924.
[29] D. Socie, G. Marquis, Multiaxial Fatigue, 1st Edition, USA: Society of Automotive Engineers SAE International, (2000).
[30] A. Carpinteri, A. Spagnoli, S. Vantadori, Multiaxial fatigue assessment using a simplified critical plane-based criterion, Int. J. Fatigue., 33(8) (2011) 969-976.
[31] A. Carpinteri, C. Ronchei, D. Scorza, S. Vantadori, Critical plane orientation influence on multiaxial high-cycle fatigue assessment, Phys. Mesomech., 18(4) (2015) 348-354.
[32] M. Shariyat, Automotive Body: Design and Analysis, First Edition, K.N. Toosi University Press, Iran, (2006).
[33] A. Niesłony, Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components, Mech. Sys. Sig. Proc., 23(8) (2009) 2712-2721.