The Role of Wheel Alignment Over the Fatigue Damage Accumulation in Vehicle Steering Knuckle

Document Type: Original Article


1 School of Science and Engineering, Sharif University of Technology, International Campus, Kish Island, Iran.

2 School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

3 Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran.


The present paper investigates the effect of changes in wheel primary angles such as Camber and Toe angles on the fatigue life of vehicle steering knuckle under multi-input random non-proportional 3D stress components. In order to develop real loading conditions for the steering knuckle, the localizing equivalent road as a combination of some rough roads (ISO road classification B-F for highway out of town, urban highway, urban asphalt, soil road, and flagstone, respectively) based on statistical data collected from different cities by utilizing a general questionnaire including road type and vehicle velocity was considered. Then, the various actual load histories obtained through multi-body dynamics analysis of a full vehicle model were applied on several points of the component. The fatigue life of steering knuckle was predicted by using some prominent multi-axial fatigue criteria for non-proportional loading, rain-flow cycle counting algorithm, and Palmgren-Miner damage accumulation rule. Finally, the effect of different values of wheel angles on the fatigue life of the steering knuckle was examined. The results showed that the highest and lowest fatigue life of steering knuckle are related to the values of 2 positive and negative degrees of camber angle, respectively. The stress level is reduced in the various equivalent load histories by changing the toe angle to 0.2 negative, resulting in an increase in the fatigue life of steering knuckle.


[1] M.W. Sayers, T.D. Gillespie, C.A.V. Queiroz, The International Road Roughness Experiment, The International Bank for Reconstruction and development, Washington, (1986).
[2] M.W. Sayers, T.D. Gillespie, W.D.O. Paterson, Guidelines for Conducting and Calibrating Road Roughness Measurements, The International Bank for Reconstruction and Development, Washington, (1986).
[3] M.W. Sayers, S.M. Karamihas, Interpretation of Road Roughness Profile Data, Prepared for Federal Highway Administration Contract DTFH 61-92-C00143, (1996).
[4] A. Gonzalez, E.J. Óbrien, Y. Li, K. Cashell, The use of vehicle acceleration measurements to estimate road roughness, Vehicle. Sys. Dyn., 46(6) (2008) 483-499.
[5] P. Johannesson, I. Rychlik, Modelling of road profiles using roughness indicators, Int. J. Veh. Des., 66 (2014) 317-346.
[6] P. Kumar, E. Angelats, An Automated Road Roughness Detection from Mobile Laser Scanning Data, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop, Hannover, Germany, 6-9 June (2017).
[7] R. Kumar, A. Mukherjee, V.P. Singh, Community sensor network for monitoring road roughness using smartphones, J. Comput. Civil. Eng., 31(3) (2017) 04016059-1-110.
[8] M. Choi, M. Kim, G. Kim, S. Kim, S.C. Park, S. Lee, 3D scanning technique for obtaining road surface and its applications, Int. J. Pr. Eng. Manuf., 18(3) (2017) 367-373.
[9] K. Reza Kashyzadeh, M.J. Ostad-Ahmad-Ghorabi, A. Arghavan, Study effects of vehicle velocity on a road surface roughness simulation, Appl. Mech. Mater., 372 (2013) 650-656.
[10] R.S. Barbosa, Vehicle dynamic response due to pavement roughness, J. Braz. Soc. Mech. Sci. Eng., 30(3) (2011) 302-307.
[11] B. GoenagaSilvera, L.G. Fuentes, O. Mora, Effect of Road Roughness and Vehicle Speed on Dynamic Load Prediction and Pavement Performance Reduction, Transportation Research Board 96th Annual Meeting, Washington DC, United States, 8-12 January (2017).
[12] G. Alessandroni, A. Carini, E. Lattanzi, V. Freschi, A. Bogliolo, A Study on the Influence of Speed on Road Roughness Sensing: The Smart Road Sense Case, Sens., 17(2) (2017) 305-325.
[13] G. Triantafyllidis, A. Antonopoulos, A. Spiliotis, S. Fedonos, D. Repanis, Fracture characteristics of fatigue failure of a vehicle’s ductile iron steering knuckle, J. Fail. Anal. Prev., 9(4) (2009) 323-328.
[14] V. Sivananth, S. Vijayarangan, Fatigue life analysis and optimization of a passenger car steering knuckle under operating conditions, Int. J. Auto. Mech. Eng., 11(1) (2015) 2417-2429.
[15] E. Azrulhisham, Y. Asri, A. Dzuraidah, N. Abdullah, C. Hassan, A. Shahrom, Evaluation of fatigue life reliability of steering knuckle using Pearson parametric distribution model, Int. J. Qual. Stat. Reliab., 2010 (2010) 1-8.
[16] R. Vivekananda, A.V. Mythra Varun, Finite element analysis and optimization of the design of steering knuckle, Int. J. Eng. Res., 4(1) (2016) 121-135.
[17] K.S. Bhokare, G.M. Kakandikar, S.S. Kulkarni, Predicting the fatigue of steering knuckle arm of a sport utility vehicle while developing analytical techniques using CAE, Int. J. Sci. Res. Manag. Std., 1(11) (2013) 372-381.
[18] G.H. Farrahi, A. Khalaj, Estimation of fatigue damage caused by actual roads and maneuvers on proving ground, J. Achiev. Mater. Manuf. Eng., 14(1-2) (2006) 90-96.
[19] M. Shariyat, A fatigue model developed by modification of Gough’s theory, for random non-proportional loading conditions and threedimensional stress fields, Int. J. Fatigue., 30(7) (2008) 1248-1258.
[20] M. Shariyat, Three energy‐based multiaxial HCF criteria for fatigue life determination in components under random non‐proportional stress fields, Fatigue. Fract. Eng. Mater. Struct., 32(10) (2009) 785-808.
[21] M. Shariyat, New multiaxial HCF criteria based on instantaneous fatigue damage tracing in components with complicated geometries and random non-proportional loading conditions, Int. J. Damage Mech., 19(6) (2009) 659-690.
[22] M. Zoroufi, A. Fatemi, Durability Comparison and Life Predictions of Competing Manufacturing Processes: An Experimental Study of Steering Knuckle,the 25th Forging Industry Technical Conference, Detroit, (2004).
[23] A. Fatemi, M. Zoroufi, Fatigue Performance Evaluation of Forged versus Competing Manufacturing Process Technologies: A Comparative Analytical and Experimental Study, American Iron and Steel Institute, Toledo, (2004).
[24] M. Zoroufi, A. Fatemi, Experimental durability assessment and life prediction of vehicle suspension components: a case study of steering knuckles, Proc. Inst. Mech. Eng. D J. Automob. Eng., 220(11) (2006) 1565-1579.
[25] C.G.E. Schon, C.M. Angelo, F.A.C.E. Machado, The role of tire size over the fatigue damage accumulation in vehicle bodies, 20th European Conference on Fracture, Procedia Mater. Sci., 3 (2014) 331-336.
[26] C.M. Angelo, F.A.C.E. Machado, C.G.E. Schon, Influence of tire sizes over automobile body spectrum loads and fatigue damage accumulation, Mater. Des., 67 (2015) 385-389.
[27] J.Y. Wong, Theory of ground vehicle book, Third Edition, University of Ottawa, Wiley Interscience (2001).
[28] J. Marzbanrad, A. Hoseinpour, Structural optimization of MacPherson control arm under fatigue loading, Teh. Vjesn., 24(3) (2017) 917-924.
[29] D. Socie, G. Marquis, Multiaxial Fatigue, 1st Edition, USA: Society of Automotive Engineers SAE International, (2000).
[30] A. Carpinteri, A. Spagnoli, S. Vantadori, Multiaxial fatigue assessment using a simplified critical plane-based criterion, Int. J. Fatigue., 33(8) (2011) 969-976.
[31] A. Carpinteri, C. Ronchei, D. Scorza, S. Vantadori, Critical plane orientation influence on multiaxial high-cycle fatigue assessment, Phys. Mesomech., 18(4) (2015) 348-354.
[32] M. Shariyat, Automotive Body: Design and Analysis, First Edition, K.N. Toosi University Press, Iran, (2006).
[33] A. Niesłony, Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components, Mech. Sys. Sig. Proc., 23(8) (2009) 2712-2721.