An Experimental Investigation into Wear Resistance of Mg-SiC Nanocomposite Produced at High Rate of Compaction

Document Type : Original Research Paper


1 Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran.

2 Mechanical Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran.


The Mg-SiC nanocomposite specimens were produced at low strain rate of 8×103s1 using a universal INSTRON testing machine, strain rate of about 8×102s1 using a drop hammer and at strain rate of about 1.6×103semploying a Split Hopkinson Pressure Bar (SHPB). Tribological behavior of the samples was investigated in this work. The compaction process was performed at the temperature of 723K. The results showed increase in the wear resistance as the nano reinforcement increased. The results also indicated that as the reinforcement content increased to 10 vol%, the weight loss reduced approximately by 63%, 58%, and 35% for the samples fabricated by SHPB, drop hammer, and quasi-static hot pressing, respectively. The results also suggested that the wear rate of samples fabricated by SHPB was nearly 40% lower than that for quasi-statically fabricated samples and non-reinforced samples.


[1] S. Sharma, B. Anand, M. Krishna, Evaluation of sliding wear behaviour of feldspar particlereinforced magnesium alloy composites, Wear, 241(1) (2000) 33-40.
[2] S.K. Thakur, B.K. Dhindaw, The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness, Wear, 247(2) (2001) 191-201.
[3] C. Lim, S. Lim, M. Gupta, Wear behaviour of SiC p-reinforced magnesium matrix composites, Wear, 255(1-6) (2003) 629-637.
[4] A. Atrian, G. Majzoobi, H. Bakhtiari, The Effect of Pre-compaction on Dynamic Compaction Process of Al/SiC Nanocomposite Powder, The BiAnnual International Conference on Experimental Solid Mechanics and Dynamics (X-Mech-2014), Tehran (2014).
[5] M. Habibnejad-Korayem, R. Mahmudi, Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles, Wear, 268(3-4) (2010) 405-412.
[6] A. Mondal, S. Kumar, Dry sliding wear behaviour of magnesium alloy based hybrid composites in transverse direction, Mater. Sci. Forum, (783-786) (2014) 1530-1535.
[7] J. Umeda, K. Kondoh, H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO, Mater. Sci. Eng. A., 504(1-2) (2009) 157-162.
[8] A. Mandal, B. Murty, M. Chakraborty, Wear behaviour of near eutectic Al–Si alloy reinforced with in-situ TiB2 particles, Mater. Sci. Eng. A., 506(1-2) (2009) 27-33.
[9] M., Jafari, M., M.H. Abbasi, M.H. Enayati, F. Karimzadeh, Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods, Adv. Powder. Technol., 23(2) (2012) 205-210.
[10] A. Ahmed, A. Neely, K. Shankar, T. Eddowes, Synthesis, tensile testing, and microstructural characterization of nanometric SiC particulatereinforced Al 7075 matrix composites, Metall. Mater. Trans. A., 41(6) (2010) 1582-1591.
[11] A. Atrian, S.H. Nourbakhsh, Mechanical behavior of Al-SiCnp nanocomposite fabricated by hot extrusion technique, Int. J. Adv. Des. Manuf. Tech., 11 (2018) 33-41.
[12] S. Sattari, A. Atrian, Effects of the deep rolling process on the surface roughness and properties of an Al-3 vol% SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion, Intl J. Min., Met. Mater., 24(7) (2017) 814-825.
[13] K. Rahmani, G.H. Majzoobi, A. Atrian, A novel approach for dynamic compaction of Mg–SiC nanocomposite powder using a modified Split Hopkinson Pressure Bar, Powder. Metall., 61(2) (2018) 164-177.
[14] G.H. Majzoobi, K. Rahmani, A. Atrian, Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction, Mater. Res. Exp., 5(1) (2018) 015046.
[15] P. Hernández, H. Dorantes, F. Hernandez, R. Esquivel, D. Rivas, V. Lopez, Synthesis and microstructural characterization of Al–Ni3Al composites fabricated by press-sintering and shockcompaction, Adv. Powder. Technol., 25(1) (2014) 255-260.
[16] W.H. Gourdin, Dynamic consolidation of metal powders, Prog. Mater Sci., 30(1) (1986) 39-80.
[17] S.K. Thakur, G.T. Kwee, M. Gupta, Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements, J. Mater. Sci., 42(24) (2007) 10040-10046.
[18] E.D. Francis, N. Eswara Parsad, Ch. Ratnam, S.K. Pitta, V.K. Venkata, Synthesis of nano alumina reinforced magnesium-alloy composites, Int. J. Adv. Sci. Tech., 27 (2011) 35-44.
[19] Q. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy, J. Alloy. Compd., 386(1) (2005) 177-181.
[20] J.Z. Wang, X.H. Qu, H.Q. Yin, M.J. Yi, X.J. Yuan, High velocity compaction of ferrous powder, Powder. Technol., 192(1-2) (2009) 131-136.
[21] Z. Yan, F. Chen, Y. Cai, High-velocity compaction of titanium powder and process characterization, Powder. Technol., 208(3) (2011) 596-599.
[22] A.N. Faruqui, Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation, Met. Mater. Int., 18(1) (2012) 157-163.
[23] A. Atrian, G.H. Majzoobi, H. Bakhtiari, M.H. Enayati, A comparative study on hot dynamic compaction and quasi-static hot pressing of Al7075/SiCnp nanocomposite, Adv. Powder. Technol., 26(1) (2015) 73-82.
[24] G.H. Majzoobi, A. Atrian, M.K. Pipelzadeh, Effect of densification rate on consolidation and properties of Al7075–B4C composite powder, Powder Metall., 58(4) (2015) 281-288.
[25] A. Atrian, G.H. Majzoobi, S.H. Nourbakhsh, S.A. Galehdari, R.M. Masoudi Nejad, Evaluation of tensile strength of Al7075-SiC nanocomposite compacted by gas gun using spherical indentation test and neural networks, Adv. Powder. Technol., 27(4) (2016) 1821-1827.
[26] A. Mondal, S. Kumar, Dry sliding wear behaviour of magnesium alloy based hybrid composites in the longitudinal direction, Wear, 267(1-4) (2009) 458-466.
[27] G. Majzoobi, A. Atrian, M. Enayati, Tribological properties of Al7075-SiC nanocomposite prepared by hot dynamic compaction, Compos. Interface., 22(7) (2015) 579-593.
[28] G. Majzoobi, H. Bakhtiari, A. Atrian, Warm dynamic compaction of Al6061/SiC nanocomposite powders, Proc. Ins. Mech. Eng. L. J. Materi. Des. Appl., 230(2) (2016) 375-387.
[29] Standard, A., E384 (2010e2): Standard test method for Knoop and Vickers hardness of materials. ASTM Standards, ASTM International, West Conshohocken, PA, (2010).
[30] Standard, A., G99-05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, (2010). 
[31] A. Alizadeh, E. Taheri-Nassaj, Wear behavior of nanostructured Al and Al-B4C nanocomposites produced by mechanical milling and hot extrusion, Tribol. Lett., 44(1) (2011) 59.
[32] S. Seetharaman, J. Subramanian, K.S. Tun, A.M.S. Hamouda, M. Gupta, Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials, 6(5) (2013) 1940-1955.
[33] Q. Jiang, H. Wang, J.G. Wang, C.L. Xu, Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium, Mater. Lett., 57(16-17) (2003) 2580-2583.
[34] M.J. Yi, H.Q. Yin, J.Z. Wang, X.J. Yuan, Comparative research on high-velocity compaction and conventional rigid die compaction, Front. Mater. Sci. China., 3(4) (2009) 447-451.
[35] Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, Effect of surface nanocrystallization on friction and wear properties in low carbon steel, Mater. Sci. Eng. A., 352(1-2) (2003) 144-149.
[36] B. Selvam, P. Marimuthu, R. Narayanasamy, M. Kamaraj, Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater. Des., 58 (2014) 475-481.
[37] J. Archard, Contact and rubbing of flat surfaces, J. Appl. Physic., 24(8) (1953) 981-988.
[38] M. Shanthi, Q. Nguyen, M. Gupta, Sliding wear behaviour of calcium containing AZ31B/Al2O3 nanocomposites, Wear, 269(5) (2010) 473-479.
[39] I. Aatthisugan, A.R. Rose, D.S. Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite, J. Magnesium Alloys, 5(1) (2017) 20-25.
[40] X. Yao, Z. Zhang, Y.F. Zheng, C. Kong, M.Z. Quadir, J.M. Liang, Y.H. Chen, P. Munroe, D.L. Zhang, Effects of SiC nanoparticle content on the microstructure and tensile mechanical properties of ultrafine grained AA6063-SiCnp nanocomposites fabricated by powder metallurgy, J. Mater. Sci. Technol., 33(9) (2017) 1023-1030.
[41] D. Markov, D. Kelly, Mechanisms of adhesioninitiated catastrophic wear: pure sliding, Wear, 239(2) (2000) 189-210.
[42] M. Jafari, M.H. Enayati, M.H. Abbasi, F. Karimzadeh, Compressive and wear behaviors of bulk nanostructured Al2024 alloy, Mater. Des., 31(2) (2010) 663-669.
[43] S.R. Anvari, F. Karimzadeh, M.H. Enayati, A novel route for development of Al-Cr-O surface nano-composite by friction stir processing, J. Alloy. Compd., 562(Supplement C) (2013) 48-55.
[44] E.M. Sharifi, F. Karimzadeh, M. Enayati, Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites, Mater. Des., 32(6) (2011) 3263-3271.
[45] Z. Han, L. Lu, K. Lu, Dry sliding tribological behavior of nanocrystalline and conventional polycrystalline copper, Tribol. Lett., 21(1) (2006) 45-50.
[46] X.R. Lv, S.G. Wang, Y. Liu, K. Long, S. Li, Z.D. Zhang, Effect of nanocrystallization on tribological behaviors of ingot iron, Wear, 264(7-8) (2008) 535-541.