[1] Y. Xu, J. Zhang, Y. Bai, M.A. Meyers, Shear localization in dynamic deformation: microstructural evolution, Met. Mater. Transact. A, 39 (2008) 811-843.
[2] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, Tensile deformation of an ultrafinegrained aluminium alloy: Micro shear banding and grain boundary sliding, Acta Mater., 56(10) (2008) 2223-2230.
[3] H. Miyamoto, T. Xiao, T. Uenoya, M. Hatano, Effect of simple shear deformation prior to cold rolling on texture and ridging of 16% Cr ferritic stainless steel sheets, ISIJ Internat., 50(11) (2010) 1653-1659.
[4] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Microstructural evolution and shear fracture of Cu-16 at.% Al alloy induced by equal channel angular pressing, Mater. Sci. Eng. A, 527(16-17) (2010) 4510-4514.
[5] I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A, 560 (2013) 1-24.
[6] H. Miyamoto, T. Ikeda, T. Uenoya, A. Vinogradov, S. Hashimoto, Reversible nature of shear bands in copper single crystals subjected to iterative shear of ECAP in forward and reverse directions, Mater. Sci. Eng. A, 528(6) (2011) 2602-
2609.
[7] F. Kang, J.T. Wang, Y. Peng, Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy, Mater. Sci. Eng. A, 487(1-2) (2008) 68-73.
[8] I.L. Dillamore, J.G. Roberts, A.C. Bush, Occurrence of shear bands in heavily rolled cubic metals, Metal. Sci., 13(2) (1979) 73-77.
[9] S.D. Antolovich, R.W. Armstrong, Plastic Strain Localization in Metals: Origins and Consequences, Prog. Mater. Sci., 59 (2014) 1-160.
[10] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys, Metall. Mater. Transact. A, 41(4) (2010) 778-786.
[11] T.W. Wright, Shear band susceptibility: Work hardening materials, Int. J. Plast., 8(5) (1992) 583-602.
[12] V.M. Kiener, K. Durst, Advanced nanoindentation testing for studying strain-rate sensitivity and activation volume, JOM, 69(11) (2017) 2246-2255.
[13] C. Brozek, F. Sun, P. Vermaut, Y.Millet, A. Lenain , D. Embury, P.J. Jacques, F. Prima, A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties, Scri. Mater., 114 (2016) 60-64.
[14] S.L. Semiatin, J.J. Jonas, Formability and workability of metals, ASM, Ohio, (1984) 43-120.
[15] S.L. Semiatin, V.M. Segal, R.L. Goetz, Workability of a gamma titanium aluminide alloy during channel angular extrusion, Scri. Metall. Mater., 33(4) (1995) 535-540.
[16] F. Delaire, J.L. Raphanel and C. Rey, Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations, Acta Mater., 48 (2000) 1075-1087.