Analytical and Numerical Study of the Swelling Behavior in Functionally Graded Temperature-sensitive Hydrogel Shell

Document Type : Original Research Paper


Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran.


In this article, analytical and numerical methods were employed to study swelling behavior of a cylindrical shell made of a functionally graded temperature sensitive hydrogel. The hydrogel shell has gradient property in radial direction. The shell cross-linking density is a linear function of the radial coordinate of the FGM shell. The analytical model was first developed for the hydrogel shell and a second order differential equation was derived which can be solved by numerical methods. Then, finite element solution of the under-study functionally graded hydrogel shell was performed by implementing the material model in ABAQUS software and by writing a user-defined subroutine. In this regard, the functionally graded hydrogel shell was modeled as multi-layered shell with discrete material properties. A good agreement between the analytical results and numerical simulation was observed and validity of analytical solution was confirmed. Thereafter, analytical model was employed to study the swelling behavior of functionally graded shell for different thickness ratios of the shell.


[1] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogel, Soft Mater., 6(4) (2010) 784-793.
[2] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M.M. Mashhadi, Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis, Compos. Part B Eng., 110(1) (2017) 116-123.
[3] T. Morimoto, F. Ashida, Temperature-responsive bending of a bilayer gel, Int. J. Solids Struct., (56-57) (2015) 20-28.
[4] J. Abdolahi, M. Baghani, N. Arbabi, H. Mazaheri, Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis, Compos. Struct., 164 (2017) 219-228.
[5] W. Toh, T.Y. Ng, J. Hu, Z. Liu, Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels, Int. J. Solids Struct., 51(25-26) (2014) 4440-4451.
[6] A. Kargar-Estahbanaty, M. Baghani, N. Arbabi, Developing an analytical solution for photosensitive hydrogel bilayers, J. Intell. Mater. Syst. Struct., 29(9) (2018) 1953-1963.
[7] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404(6778) (2000) 588-590.
[8] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.F. Arndt, H.P. Adler, Review on hydrogel-based pH sensors and microsensors, Sensors, 8(1) (2008) 561-581.
[9] K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications, Sens. Actuators. B: Chemical., 147(2) (2010) 765-774.
[10] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids., 56(5) (2008) 1779-1793.
[11] S.A. Chester, L. Anand, A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels, J. Mech. Phys. Solids., 59(10) (2011) 1978-2006.
[12] S.A. Chester, C.V. Di Leo, L. Anand, A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels, Int. J. Solid. Struct., 52 (2015) 1-18.
[13] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, J. Mech. Phys. Solids., 59(11) (2011) 2259-2278.
[14] H. Mazaheri, M. Baghani, R. Naghdabadi, Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels, J. Intell. Mater. Syst. Struct., 27(3) (2016) 324-336.
[15] H. Mazaheri, Study of swelling behavior of temperature sensitive hydrogels considering inextensibility of network, Scientia Iranica, (2018) Doi: 10.24200/SCI.2018.5266.1181.
[16] D. Kim, D.J. Beebe, A bi-polymer micro one-way valve, Sens. Actuators. A: Physical., 136(1) (2007) 426-433.
[17] T. He, M. Li, J. Zhou, Modeling deformation and contacts of pH sensitive hydrogels for microfluidic flow control, Soft. Mater., 8(11) (2012) 3083-3089.
[18] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in microvalves: analytical and numerical study, Smart Mater. Struct., 24(4) (2015) 045004.
[19] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, and M. Mosavi-Mashhadi, Study on pH-sensitive hydrogel micro-valves: A fluid–structure interaction approach, J. Intell. Mater. Syst. Struct., 28(12) (2016) 1589-1602.
[20] H. Mazaheri, A. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, J. Intell. Mater. Syst. Struct., 29(20) (2018) 3960-3971.
[21] F. Afroze, E. Nies, H. Berghmans, Phase transitions in the system poly (N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks, J. Mol. Struct., 554(1) (2000) 55-68.
[22] W., Hong, Z. Liu, and Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct., 46(17) (2009) 3282-3289.
[23] U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Society for Industrial and Applied Mathematics Publisher, (1994).