Investigation of Hot-extrusion Effect on Microhardness, Microstructure and Corrosion Behavior of Magnesium-based Bio-composites

Document Type: Original Article

Authors

School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

Magnesium alloys are a unique choicefor orthopedic implants due to their biocompatibility and biodegradability properties. In this article, the impact of hot-extrusion process is investigated on microhardness, microstructure, and corrosion behavior of magnesium/2.5wt% hydroxyapatite (HA) rods as a bio-composite. Hot extrusion process was implemented on the as-cast samples in two different steps resulting two various total extrusion ratios of 5:1 and 20:1. The corrosion susceptibility of the extruded composites was studied by polarization test in simulated body fluid (SBF) as a corrosive environment. According to the results, adding hydroxyapatite reinforcing particles and applying higher extrusion ratios caused grain refinement in the matrix comparing to the pure magnesium. Moreover, while the hardness of the pure magnesium sample decreased slightly after the second extrusion pass, it was enhanced in the composite specimens. Besides, both extrusion ratio and reinforcing particles had direct effects on the corrosion behavior, so that with the presence of HA particles and applying the higher extrusion ratio, the corrosion resistance of the samples was improved.

Keywords


[1] F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, N. Hort, Biodegradable magnesium-hydroxyapatite metal matrix composites, Biomaterials, 28(13) (2007) 2163-2174.
[2] M. Gui, P. Li, J. Han, Fabrication and characterization of cast magnesium matrix composites by vacuum stir casting process, J. Mater. Eng. Perform., 12(2) (2003) 128-134.
[3] M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites: A review, J. Magnesium Alloys, 5(2) (2017) 189-201.
[4] X. Gu, W. Zhou, Y. Zheng, L. Dong, Yulin Xi, D. Chai, Microstructure, mechanical property, biocorrosion and cytotoxicity evaluations of Mg/HA composites, J. Mater. Sci. Eng., 30(6) (2010) 827-832.
[5] M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatites, Biomaterials, 23(3) (2002) 751-755.
[6] D. Tadic, M. Epple, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 25(6) (2004) 987-994.
[7] N. Omidi, A.H. Jabbari, M. Sedighi, Mechanical and microstructural properties of titanium/hydroxyapatite functionally graded material fabricated by spark plasma sintering, J. Powder. Metall., 61(5) (2018) 417-427.
[8] A. Shafiee, A.H. Jabbari, M. Sedighi, Fabrication of magnesium/hydroxyapatite bio-composite using stir casting method. In 5th International Conference on Composites: Characterization, Fabrication and Application (CCFA-5), Tehran, Dec. (2016).
[9] Y. Chen, Q. Wang, J. Peng, C. Zhai, W. Ding, Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy, J. Mate. Process. Technol., 182(1-3) (2007) 281-285.
[10] K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: A review, Corrosion, 66(7) (2010) 075005-1-13.
[11] A. Bakkar, V. Neubert, Corrosion characterisation of alumina-magnesium metal matrix composites, J. Corros. Sci., 49(3) (2007) 1110-1130.
[12] A.S. Sabet, A.H. Jabbari, M. Sedighi, Microstructural properties and mechanical behavior of magnesium/hydroxyapatite biocomposite under static and high cycle fatigue loading, J. Compos. Mater., 52(13) (2018) 1711-1722.
[13] A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, K.S. Shin, Microstructure and mechanical properties of Mg-HAP composites, Bull. Mater. Sci., 33(1) (2010) 43-47.
[14] T. Kokubo, H. Takadama, How useful is SBF in predicting invivo bone bioactivity, Biomaterials, 27(15) (2006) 2907-2915.
[15] M.J. Shen, X.J. Wang, T. Ying, K. Wu, W.J. Song, Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano Sic particles, J. Alloys Compd., 686 (2016) 831-840.
[16] X.J. Wang, L.Xu, X.S. Hu, K.B. Nie, K.K. Deng,
K. Wu, M.Y. Zheng, Influences of extrusion parameters on microstructure and mechanical properties of particulate reinforced magnesium matrix composites, Mater. Sci. Eng., 528(21) (2011) 6387- 6392.
[17] G.R. Argade, S.K. Panigrahi, R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58 (2012) 145-151.
[18] R. Del Campo, B. Savoini, A. Muñoz, M.A. Monge, G. Garcés, Mechanical properties and corrosion behavior of Mg-HAP composites, J. Mech. Behav. Biomed. Mater., 39 (2014) 238-246.