[1] S. Nagpal, N. Jain, S. Sanyal, Stress concentration and its mitigation techniques in flat plate with singularities-a critical review, Eng. J., 16(1) (2012) 1-15.
[2] G.S. Giare, R. Shabahang, The reduction of stress concentration around the hole in an isotropic plate using composite materials, Eng. Fract. Mech., 32(5) (1989) 757-766.
[3] R. Sburlati, S.R. Atashipour, S.A. Atashipour, Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer, Compos. Part B: Eng., 61 (2014) 99-109.
[4] Q. Yang, C.F. Gao, Reduction of the stress concentration around an elliptic hole by using a functionally graded layer, Acta Mech., 227(9) (2016)2427-2437.
[5] A. Francavilla, C.V. Ramakrishnan, O. Zienkiewicz, Optimization of shape to minimize stress concentration, J. Strain Anal., 10(2) (1975) 63-70.
[6] Z. Wu, Optimal hole shape for minimum stress concentration using parameterized geometry models, Struct. Multidiscip. Optim., 37(6) (2009) 625-634.
[7] D.R. Shah, S.P. Joshi, W. Chan, Stress concentration reduction in a plate with a hole using piezoceramic layers, Smart Mater. Struct., 3(3) (1994) 302-308.
[8] D.R. Shah, S.P. Joshi, W. Chan, Static structural response of plates with piezoceramic layers, Smart Mater. Struct., 2(3) (1993) 172-180.
[9] J. Jafari Fesharaki, S.i. Golabi, Optimum pattern of piezoelectric actuator placement for stress concentration reduction in a plate with a hole using particle swarm optimization algorithm, Proceedings of the Institution of Mechanical Engineers,
Part C: J. Mech. Eng. Sci., 229(4) (2015) 614-628.
[10] P.E. Erickson, W.F. Riley, Minimizing stress concentrations around circular holes in uniaxially loaded plates, Exp. Mech., 18(3) (1978) 97-100.
[11] S.A. Meguid, Finite element analysis of defence hole systems for the reduction of stress concentration in a uniaxially-loaded plate with two coaxial holes, Eng. Fract. Mech., 25(4) (1986) 403-413.
[12] A.R. Othman, K.J. Jadee, M.Z. Ismadi, Mitigating stress concentration through defense hole system for improvement in bearing strength of composite bolted joint, Part 1: Numerical analysis, J. Compos. Mater., 51(26) (2017) 3685-3699.
[13] S. Nagpal, S. Sanyal, N. Jain, Mitigation curves for determination of relief holes to mitigate stress concentration factor in thin plates loaded axially for different discontinuities, Int. J. Eng. Innovative Technol., 2(3) (2012) 1-7.
[14] W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, John Wiley & Sons Publisher, Inc. (2007).
[15] W.C. Young, R.G. Budynas, Roark’s Formulas for Stress and Strain, Seventh Edition McGraw-Hill Publisher, (2002).
[16] G.I.N. Rozvany, T. Lewiński, Topology Optimization in Structural and Continuum Mechanics, Springer Publisher, (2014).
[17] M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Compu. Methods Appl. Mech. Eng., 71(2) (1988) 197-224.
[18] M.P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Methods, and Aplications, Springer Science and Business Media Publisher, (2013).
[19] M.H. Sadd, Elasticity: Theory, Applications, and Numerics, Academic Press, (2009).
[20] E. Lee, A Strain Based Topology Optimization Method, Rutgers University-Graduate SchoolNew Brunswick Publisher, (2011).
[21] M.P. Bendsoe, Optimal shape design as a material distribution problem, Struct. Optim., 1(4) (1989) 193-202.
[22] M. Zhou, G.I.N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89(1-3) (1991) 309-336.
[23] O. Sigmund, On the design of compliant mechanisms using topology optimization, J. Mech. Struct. Mech., 25(4) (1997) 493-524.
[24] A. Rietz, Sufficiency of a finite exponent in SIMP (power law) methods, Struct. Multidiscip. Optim., 21(2) (2001) 159-163.
[25] E. Lee, H.C. Gea, A strain based topology optimization method for compliant mechanism design, Struct. Multidiscip. Optim., 49(2) (2014) 199-207.
[26] S. Sanyal, P. Yadav, Relief holes for stress mitigation in infinite thin plates with single circular hole loaded axially, in ASME 2005 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (2005).
[27] A. Standard, E8/E8M, 2009. Standard Test Methods for Tension Testing of Metallic Materials, ASTM international, West Conshohocken PA Publisher, (2009).