[1] W. Abramowicz, The effective crushing distance in axially compressed thin-walled metal columns, Int. J. Impact Eng., 1(3) (1983) 309-317.
[2] W. Abramowicz, N. Jones, Dynamic axial crushing of circular tubes, Int. J. Impact Eng., 2(3) (1984) 263-281.
[3] T. Wierzbicki, W. Abramowicz, On the crushing mechanics of thin-walled structures, J. Appl. Mech., 50(4a) (1983) 727-734.
[4] M. Güden, H. Kavi, Quasi-static axial compression behavior of constraint hexagonal and squarepacked empty and aluminum foam-filled aluminum multi-tubes, Thin Walled Struct., 44(7) (2006) 739-750.
[5] A.G. Olabi, E. Morris, M.S.J. Hashmi, M.D. Gilchrist, Optimised design of nested circular tube energy absorbers under lateral impact loading, Int. J. Mech. Sci., 50(1) (2008) 104-116.
[6] M. Avalle, G. Chiandussi, Optimisation of a vehicle energy absorbing steel component with experimental validation, Int. J. Impact Eng., 34(4) (2007) 843-858.
[7] X.W. Zhang, Q.D. Tian, T.X. Yu, Axial crushing of circular tubes with buckling initiators, Thin Walled Struct., 47(6-7) (2009) 788-797.
[8] E. Acar, M.A. Guler, B. Gerçeker, M.E. Cerit, B. Bayram, Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations, Thin Walled Struct., 49(1) (2011) 94-105.
[9] M. Shariati, H.R. Allahbakhsh, Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings, Thin Walled Struct., 48(8) (2010) 620-628.
[10] A. Alavi Nia, J. Haddad Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin Walled Struct., 48(12) (2010) 946-954.
[11] A. Ghamarian, M.A. Farsi, Experimental and numerical analysis of collapse behavior of combined Thin walled structures under axial loading, Aerosp. Res. Inst., 8 (2012) 99-109.
[12] A. Ghamarian, M. Tahaye Abadi, Axial crushing analysis of end-capped circular tube, Thin Walled Struct., 49(6) (2011) 743-752.
[13] V. Jandaghi Shahi, J. Marzbanrad, Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes, Thin Walled Struct., 60 (2012) 24-37.
[14] J. Song, Numerical simulation on windowed tubes subjected to oblique impact loading and a new method for the design of obliquely loaded tubes, Int. J. Impact Eng., 54 (2013) 192-205.
[15] G. Sun, F. Xu, G. Li, Q. Li, Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness, Int. J. Impact Eng., 64 (2014) 62-74.
[16] S. Sharifi, M. Shakeri, H.E. Fakhari, M. Bodaghi, Experimental investigation of bitubal circular energy absorbers under quasi-static axial load, Thin Walled Struct., 89 (2015) 42-53.
[17] A. Alavi Nia, S. Chahardoli, Optimizing the layout of nested three-tube structures in quasi-static axial collapse, Thin Walled Struct., 107 (2016) 169-181.
[18] A.S.M.I.H. Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials: ASM International, (1990).
[19] ASTM. International, ASTM E8/E8M - 09 Standard Test Methods for Tension Testing of Metallic Materials: ASTM, (2009).
[20] R. Suich, G. Derringer, Simultaneous optimization of several response variables, J. Qual. Tech., 12(4) (1980) 214-219.