A 3D Simulation of Bolted Joint and Fatigue Life Estimation Using Critical Distance Technique

Document Type: Original Article


Mechanical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.



Bolted joints are one of the most common joints in the industry and assemble the most of the machine elements and segments together. Majority of structures are affected by fluctuating forces, therefore there is the risk of fatigue failure that causes countless damages, thus fatigue life estimation of bolted joints have always been important. The value of high stress concentration at the threads root especially first engaged thread causes problems for fatigue life estimation, since by applying stresses lower than yield stress of the bolt material, plastic deformation occurs at zones of thread root that reach to ultimate stress but fracture does not happen and in some cases bolt-nut joints have infinite life, so that maximum stress at thread root is not fatigue life determinant. The modified critical distance technique and expressed stress at this distance were used for determination of fatigue life in joint. In this study, the bolted joint fatigue life prediction using critical distance technique was compared to experimental results. The three-dimensional finite element analysis for bolted joint was performed. Pre-tightening process and tensile axial force were simulated in ABAQUS software after applying two steps of force including rotation displacement to the center of the nut due to clamping joints (applied torque) and tensile force, the stress distribution resultant of different tensile forces by application of the critical distance technique and mechanical properties fatigue life were determined, and S-N curve prediction matched well with experimental data.


[1] L. Maduschka, Bean Spruchung, Von Schrauben Verbandungen and Zweckmabige Gestaltung der Gewindetrager, (Stresses in Threaded Connections and Shape Optimization), Forschung auf dem Gebiete des Ingenie eurwesens, 7(6) (1936) 229-305.
[2] D.G. Sopwith, D. Sc., Wh. Sc., M.I. Mech., E., The distribution of load in screw threads, Proceeding of the Institutation of Mechanical Engineers, 159(1) (1984) 373-383.
[3] E.E. Stoeckly, H.J. Macke, Effect of taper on screw-thread load distribution, ASME Trans, 74(1) (1952) 103-112.
[4] E.A. Patterson, B. Kenny, A modification to the theory for the load distribution in conventional nuts and bolts, J. Strain Anal. Eng. Des., 21(1) (1986) 17-23.
[5] K. Maruyama, Stress analysis of a nut-bolt joint by the finite element method and the copper electroplating method, Bull. JSME, 17(160) (1974) 442-450.
[6] I. Piscan, N. Predincea, N. Pop, Finite element analysis of bolted joint, J. Manuf. Syst., 5(3) (2010) 167-172.
[7] J.G. Williams, R.E. Anley, D.H. Nash, T.G.F. Gray, Analysis of externally loaded bolted joints: analytical, computational and experimental study, Int. J. Press. Vessels Pip., 86(7) (2009) 420-427.
[8] T.F. Lehnhoff, K.I. Kwang, M.L. Mckay, Member stiffness and contact pressure distribution of bolted joints, J. Mech. Des., 116 (1994) 550-557.
[9] N. Haidar, S. Obeed, M. Jawa, Mathematical representation of bolted-joint stiffness: a new suggested model, J. Mech. Sci. Tech., 25(11) (2011) 2827-2834.
[10] O. Zhang, J.A. Poirier, New analytical model of bolted joints, J. Mech. Des., 126(4) (2004) 721-728.
[11] E. Dragoni, Effect of thread pitch and frictional coefficient on the stress concentration in metric, Bolt Connections, J. Offshore Mech. Arct. Eng., 116(1) (1994) 21-27.
[12] W.G. Waltermire, A fresh look at a basic question: Coarse or fine threads, Mach. Des., 32 (1960) 134-140.
[13] G.H. Majzoobi, G.H. Farrahi, N. Habibi, Experimental evaluation of the effect of thread pitch on fatigue life of bolts, Int. J. Fatigue, 27(2) (2005) 189-196.
[14] G.H. Majzoobi, G.H. Farrahi, S.J. Hardy, M.K. Pipelzadeh, N. Habibi, Experimental results and finite element predictions of the effects of nut geometry, washer and Teflon tape on the fatigue life of bolts, Fatigue Fract. Eng. Mater. Struct., 28(6) (2005) 557-564.
[15] N.F. Knight, D.R. Phillips, I.S. Raju, Simulating the structural response of a preloaded bolted joints, American Institute of Aeronautics and Astronautics, (2019) 1-21, DOI: 10.2514/6.2008-1842.
[16] F. Esmaeili, T.N. Chakherlou, M. Zehsaz, Investigation of bolt clamping force on the fatigue life of double lap simple bolted and hybrid (bolted/bonded) joints via experimental and numerical analysis, Eng. Fail. Anal., 45 (2014) 406-420.
[17] A. Biehl, A finite element analysis based approach to determining the nut factor, Master of Mechanical Engineering Thesis, Rensselaer Polytechnic Institute, Hartford, CT, Final Report, (2015).
[18] T. Fukuoka, M. Nomura, Proposition of helical thread modeling with accurate geometry and finite element analysis, J. Pressure Vessel Technol., 130(1) (2008) 0112041-0112046.
[19] Y. Hu, B. Yang, Sh.D. Nie, G.X. Dai, Performance of high strength structural bolts in tension: effects of tolerance classes, International Conference on Performance-based and Life-cycle Sructural Engineering, Brisbane, QLD, Australia (2015) 776-781.
[20] X. Chen, N.A. Noda1, M.A. Wahab, Y.I. Akaishi1, Y. Sano, Y. Takase, G. Fekete, Fatigue failure analysis for bolt-nut connections having slight pitch differences using experimental and finite element methods, Acta Polytechnica Hungarica, 12(8) (2015) 61-79.
[21] Q.M. Yu, H.L. Zhou, Finite element study on pretightening process of threaded connection and failure analysis for pressure vessel, 14th International Conference on Pressure Vessel Technology, 130 (2015) 1385-1396.
[22] Sh. Yosefzadeh, S. Torabi, Study and analysis of methods to reduce stress concentration in threads of bolt and nut joints, 1th National Conference on Civil Engineering and Geology, May 13-14, (2015) Aligudarz, Iran (In Persian).
[23] E. Selahi, Failure study of hybrid bonded-bolted composite single and double lap joint, J. Stress Anal., 3(2) (2019) 37-46.
[24] V. Cojocaru, Z.I. Korka, Influence of thread root radius on maximum local stresses at large diameter bolts under axial loading, Analele Universitatii, Eftimie Murgu, Resita, Anul XXI, NR (1) (2014) 85-90.
[25] M. Jasztal, M. Regowski, Fatigue life analysis of bolt joints with use of ANSYS software, Mechanik, 91(7) (2018) 600-602.
[26] Q. Yu, H. Zhou, X. Yu, X. Yang, Hightemperature low cycle fatigue life prediction and experimental research of pre-tightened bolts, Metals, 8(10) (2018) 1-14.
[27] L. Susmel, The theory of critical distances: a review of its applications in fatigue, Eng. Fract. Mech., 75(7) (2008) 1706-1724.
[28] J.R. Davis, Metals Handbook, ASM International. Handbook Committee, CRC Press, (1998).
[29] K.H. Brown, C. Morrow, S. Durbin, A. Baca, Guideline for bolted joint design and analysis: version 1.0, Sandia report, SAND2008-0371, Unlimited Release, Printed January (2008).
[30] H. Neuber, Theory of Notch Stresses: Principles for exact calculation of strength with reference to structural form and material, 2nd ed. Berlin: Springer Verlag, (1958).
[31] R.E. Peterson, Notch Sensitivity. In: G. Sines, J.L. Waisman, Eds. Metal Fatigue, New York, McGraw Hill Publisher, (1959) 293-306.
[32] K. Tanaka, Engineering formulae for fatigue strength reduction due to crack-like notches, Int. J. Fract., 22(2) (1983) 39-46.
[33] B. Atzori, P. Lazzarin, R. Tovo, Evaluation of the fatigue strength of a deep drawing steel, 137 (1992) 556-561.
[34] D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue, 21(5) (1999) 413-420.
[35] M.H. El Haddad, K.N. Smith, T.H. Topper, Fatigue crack propagation of short cracks, J. Eng. Mater. Tech., 101(1) (1979) 42-46.
[36] T. Hattori, M.A.B.A. Wahab, T. Ishida, M. Yamashita, Fretting fatigue life estimations based on the critical distance stress theory, Procedia Eng., 10 (2011) 3134-3139.
[37] L. Susmel, The theory of critical distances: a review of its applications in fatigue, Eng. Fract. Mech., 75(7) (2008) 1706-1724.
[38] S.E. Ferreira, J.T.P. De Castro, M.A. Meggiolaro, A model to cyclic damage accumulation calculated by strip-yield procedures, Frattura Ed Integrità Strutturale, 11(41) (2017) 129-138.