Effect of FSP Pass Number on the Tribological Behavior of AZ31 Magnesium Alloy

Document Type: Original Research Paper

Authors

Materials Engineering Department, Bu-Ali Sina University, Hamedan, Iran.

Abstract

Friction stir processing (FSP) in different pass number, accordingly one and four, was performed to AZ31 magnesium alloy. Optical and scanning electron microscopy (SEM) were used to investigate the effect of FSP and its pass number on the microstructure of FSPed samples. The hardness of the
samples was measured using microhardness measurement. Furthermore, wear behaviors of the samples, including wear rate and friction coefficient, were investigated using a reciprocal wear machine. To deduce the wear mechanism, SEM observations of the worn surface were carried out. Optical microscopy of FSPed samples showed grain refinement in the stir zone. Increasing FSP pass
number had a considerable effect on grain refinement. The average grain size of the as-received AZ31 base metal reduced from 11µm to about 4µm after four passes. Microhardness evaluations showed a substantial improvement by increasing FSP pass number, about 70% improvement. Wear tests results revealed enhanced tribological in FSPed samples. SEM observations of the worn surfaces indicated that the abrasion was the dominant wear mechanism governed in the samples.

Keywords


[1] M. Avedesian, H. Baker, ASM specialty handbook: magnesium and magnesium alloys, ASM International Publisher, (1999).
[2] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas,
L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89 (2017) 92-193.
[3] P. Ian, J. David St, N. Jian-Feng, Q. Ma, Light Alloys: Metallurgy of the Light Metals, 5nd Edition,
Elsevier Ltd, (2017).
[4] N.S. Martynenko, E.A. Lukyanova, V.N. Serebryany, M.V. Gorshenkov, I.V. Shchetinin, G.I. Raab, S.V. Dobatkin, Y. Estrin, Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing, Mater. Sci. Eng. A, 712 (2018) 625-629.
[5] Y. Zhang, F. Wang, J. Dong, L. Jin, C. Liu, W. Ding, Grain refinement and orientation of AZ31B
magnesium alloy in hot flow forming under different thickness reductions, J. Mater. Sci. Technol., 34(7) (2018) 1091-1102.
[6] J. Dutta Majumdar, B. Ramesh Chandra, A.K. Nath, I. Manna, Compositionally graded SiC dispersed metal matrix composite coating on Al by laser surface engineering, Mater. Sci. Eng. A, 433(1-2) (2006) 241-250.
[7] E. Yun, K. Lee, S. Lee, Correlation of microstructure with high-temperature hardness of (TiC, TiN)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation, Surf. Coat. Technol., 191(1) (2005) 83-89.
[8] H.K. Kang, S.B. Kang, Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit, Mater. Sci. Eng. A, 428(1-2) (2006) 336-345.
[9] Y. Wang, X. Zhang, G. Zeng, F. Li, Cast sinter technique for producing iron base surface composites, Mater. Des., 21(5) (2000) 447-452.
[10] W.B. Ding, H.Y. Jiang, X.Q. Zeng, D.H. Li, S.S. Yao, The surface modified composite layer formation with boron carbide particles on magnesium alloy surfaces through pulse gas tungsten arc treatment, Appl. Surf. Sci., 253(8) (2007) 3877-3883.
[11] N. Chawla, K.K. Chawla, Metal Matrix Composites, 2 Edition, Springer-Verlag, New York Publication, (2013).
[12] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8 (1991).
[13] Z.Y. Ma, Friction stir processing technology: A review, Metall. Mater. Trans. A, 39(3) (2008) 642-658.
[14] G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review, J. Mater. Sci. Technol., 34(1) (2018) 1-38.
[15] S.H. Nourbakhsh, A. Atrian, Effect of submerged multi-pass friction stir process on the mechanical
and microstructural properties of Al7075, J. Stress Anal., 2(1) (2017) 51-56.
[16] V.V. Kondaiah, P. Pavanteja, P. Afzal Khan, S. Anannd Kumar, R. Dumpala, B. Ratna Sunil, Microstructure, hardness and wear behavior of AZ31 Mg alloy - fly ash composites produced by friction stir processing, Mater. Today: Proc., 4(6) (2017) 6671-6677.
[17] B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial
AZ31 magnesium alloy, J. Mater. Process. Technol., 191(1-3) (2007) 77-81.
[18] C.I. Chang, X.H. Du, J.C. Huang, Producing nanograined microstructure in Mg–Al–Zn alloy by
two-step friction stir processing, Scr. Mater., 59(3) (2008) 356-359.
[19] W. Wen, W. Kuaishe, G. Qiang, W. Nan, Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy, Rare Met. Mater. Eng., 41(9) (2012) 1522-1526.
[20] B. Darras, E. Kishta, Submerged friction stir processing of AZ31 Magnesium alloy, Mater. Des., 47
(2013) 133-137.
[21] D.T. Zhang, F. Xiong, W.W. Zhang, C. Qiu, W. Zhang, Superplasticity of AZ31 magnesium alloy
prepared by friction stir processing, Trans. Nonferrous Met. Soc. China, 21(9) (2011) 1911-1916.
[22] A. Alavi Nia, H. Omidvar, S.H. Nourbakhsh, Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy, Mater. Des., 58 (2014) 298-304.
[23] Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Enhanced corrosion
resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure
by friction stir processing, Corros. Sci., 138 (2018) 284-296.
[24] American Society for Testing and Materials (Filadelfia, Pa.). ASTM E3-01: Standard Guide for
Preparation of Metallographic Specimens. ASTM. [25] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi,
Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater.
Sci. Eng. A, 433(1-2) (2006) 50-54.
[26] D. Lu, Y. Jiang, R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear, 305(1-2) (2013) 286-290.
[27] M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sivaprakasam, Synthesize of AZ31/TiC magnesium
matrix composites using friction stir processing, J. Magnes. Alloy., 3(1) (2015) 76-78.
[28] M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Mater. Des., 32(4) (2011) 2034-2041.
[29] C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, X.H. Du, J.C. Huang, Microstructure and mechanical
properties of nano-ZrO2 and nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated
by friction stir processing, Key Eng. Mater., 351 (2007) 114-119.
[30] P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol., 51(1-4) (2010) 247-260.
[31] Y. Mazaheri, M.M. Jalilvand, A. Heidarpour, A.R. Jahani, Tribological behavior of AZ31/ZrO2
surface nanocomposites developed by friction stir processing, Tribol. Int., 143 (2020) 106062, doi.org/10.1016/j.triboint.2019.106062.
[32] N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2) (2010) 589-594.
[33] C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, J.C. Huang, On the hardening of friction stir processed
Mg-AZ31 based composites with 5-20% nano-ZrOand nano-SiO2 particles, Mater. Trans., 47(12) (2006) 2942-2949.
[34] P. Asadi, G. Faraji, A. Masoumi, M.K. Besharati Givi, Experimental investigation of magnesiumbase nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes, Metall. Mater. Trans. A, 42(9) (2011) 2820-2832.
[35] C.I. Chang, C.J. Lee, J.C. Huang, Relationship between grain size and Zener-Holloman parameter
during friction stir processing in AZ31 Mg alloys, Scr. Mater., 51(6) (2004) 509-514.
[36] C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nanocomposites fabricated by friction stir processing,
Scr. Mater., 54(7) (2006) 1415-1420.
[37] H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear, 303(1-2) (2013) 65-77.
[38] M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(9-12) (2015) 2051-2058.
[39] N. Singh, J. Singh, B. Singh, N. Singh, Wear behavior of B4C reinforced AZ91 matrix composite fabricated by FSP, Mater. Today: Proc., 5(9) (2018) 19976-19984.
[40] J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(8) (1953) 981-988.