[1] M. Avedesian, H. Baker, ASM specialty handbook: magnesium and magnesium alloys, ASM International Publisher, (1999).
[2] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas,
L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89 (2017) 92-193.
[3] P. Ian, J. David St, N. Jian-Feng, Q. Ma, Light Alloys: Metallurgy of the Light Metals, 5nd Edition,
Elsevier Ltd, (2017).
[4] N.S. Martynenko, E.A. Lukyanova, V.N. Serebryany, M.V. Gorshenkov, I.V. Shchetinin, G.I. Raab, S.V. Dobatkin, Y. Estrin, Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing, Mater. Sci. Eng. A, 712 (2018) 625-629.
[5] Y. Zhang, F. Wang, J. Dong, L. Jin, C. Liu, W. Ding, Grain refinement and orientation of AZ31B
magnesium alloy in hot flow forming under different thickness reductions, J. Mater. Sci. Technol., 34(7) (2018) 1091-1102.
[6] J. Dutta Majumdar, B. Ramesh Chandra, A.K. Nath, I. Manna, Compositionally graded SiC dispersed metal matrix composite coating on Al by laser surface engineering, Mater. Sci. Eng. A, 433(1-2) (2006) 241-250.
[7] E. Yun, K. Lee, S. Lee, Correlation of microstructure with high-temperature hardness of (TiC, TiN)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation, Surf. Coat. Technol., 191(1) (2005) 83-89.
[8] H.K. Kang, S.B. Kang, Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit, Mater. Sci. Eng. A, 428(1-2) (2006) 336-345.
[9] Y. Wang, X. Zhang, G. Zeng, F. Li, Cast sinter technique for producing iron base surface composites, Mater. Des., 21(5) (2000) 447-452.
[10] W.B. Ding, H.Y. Jiang, X.Q. Zeng, D.H. Li, S.S. Yao, The surface modified composite layer formation with boron carbide particles on magnesium alloy surfaces through pulse gas tungsten arc treatment, Appl. Surf. Sci., 253(8) (2007) 3877-3883.
[11] N. Chawla, K.K. Chawla, Metal Matrix Composites, 2 Edition, Springer-Verlag, New York Publication, (2013).
[12] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8 (1991).
[13] Z.Y. Ma, Friction stir processing technology: A review, Metall. Mater. Trans. A, 39(3) (2008) 642-658.
[14] G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review, J. Mater. Sci. Technol., 34(1) (2018) 1-38.
[15] S.H. Nourbakhsh, A. Atrian, Effect of submerged multi-pass friction stir process on the mechanical
and microstructural properties of Al7075, J. Stress Anal., 2(1) (2017) 51-56.
[16] V.V. Kondaiah, P. Pavanteja, P. Afzal Khan, S. Anannd Kumar, R. Dumpala, B. Ratna Sunil, Microstructure, hardness and wear behavior of AZ31 Mg alloy - fly ash composites produced by friction stir processing, Mater. Today: Proc., 4(6) (2017) 6671-6677.
[17] B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial
AZ31 magnesium alloy, J. Mater. Process. Technol., 191(1-3) (2007) 77-81.
[18] C.I. Chang, X.H. Du, J.C. Huang, Producing nanograined microstructure in Mg–Al–Zn alloy by
two-step friction stir processing, Scr. Mater., 59(3) (2008) 356-359.
[19] W. Wen, W. Kuaishe, G. Qiang, W. Nan, Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy, Rare Met. Mater. Eng., 41(9) (2012) 1522-1526.
[20] B. Darras, E. Kishta, Submerged friction stir processing of AZ31 Magnesium alloy, Mater. Des., 47
(2013) 133-137.
[21] D.T. Zhang, F. Xiong, W.W. Zhang, C. Qiu, W. Zhang, Superplasticity of AZ31 magnesium alloy
prepared by friction stir processing, Trans. Nonferrous Met. Soc. China, 21(9) (2011) 1911-1916.
[22] A. Alavi Nia, H. Omidvar, S.H. Nourbakhsh, Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy, Mater. Des., 58 (2014) 298-304.
[23] Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Enhanced corrosion
resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure
by friction stir processing, Corros. Sci., 138 (2018) 284-296.
[24] American Society for Testing and Materials (Filadelfia, Pa.). ASTM E3-01: Standard Guide for
Preparation of Metallographic Specimens. ASTM. [25] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi,
Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater.
Sci. Eng. A, 433(1-2) (2006) 50-54.
[26] D. Lu, Y. Jiang, R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear, 305(1-2) (2013) 286-290.
[27] M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sivaprakasam, Synthesize of AZ31/TiC magnesium
matrix composites using friction stir processing, J. Magnes. Alloy., 3(1) (2015) 76-78.
[28] M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Mater. Des., 32(4) (2011) 2034-2041.
[29] C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, X.H. Du, J.C. Huang, Microstructure and mechanical
properties of nano-ZrO2 and nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated
by friction stir processing, Key Eng. Mater., 351 (2007) 114-119.
[30] P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol., 51(1-4) (2010) 247-260.
[31] Y. Mazaheri, M.M. Jalilvand, A. Heidarpour, A.R. Jahani, Tribological behavior of AZ31/ZrO2
surface nanocomposites developed by friction stir processing, Tribol. Int., 143 (2020) 106062, doi.org/10.1016/j.triboint.2019.106062.
[32] N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2) (2010) 589-594.
[33] C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, J.C. Huang, On the hardening of friction stir processed
Mg-AZ31 based composites with 5-20% nano-ZrO2 and nano-SiO2 particles, Mater. Trans., 47(12) (2006) 2942-2949.
[34] P. Asadi, G. Faraji, A. Masoumi, M.K. Besharati Givi, Experimental investigation of magnesiumbase nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes, Metall. Mater. Trans. A, 42(9) (2011) 2820-2832.
[35] C.I. Chang, C.J. Lee, J.C. Huang, Relationship between grain size and Zener-Holloman parameter
during friction stir processing in AZ31 Mg alloys, Scr. Mater., 51(6) (2004) 509-514.
[36] C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nanocomposites fabricated by friction stir processing,
Scr. Mater., 54(7) (2006) 1415-1420.
[37] H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear, 303(1-2) (2013) 65-77.
[38] M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(9-12) (2015) 2051-2058.
[39] N. Singh, J. Singh, B. Singh, N. Singh, Wear behavior of B4C reinforced AZ91 matrix composite fabricated by FSP, Mater. Today: Proc., 5(9) (2018) 19976-19984.
[40] J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(8) (1953) 981-988.