[1] E.D. Francis, N.E. Prasad, C. Ratnam, P.S. Kumar, V.V. Kumar, Synthesis of nano alumina reinforced magnesium-alloy composites, Int. J. Adv. Sci. Technol., 27 (2011) 35-44.
[2] K. Rahmani, G.H. Majzoobi, An investigation on SiC volume fraction and temperature on static and dynamic behavior of Mg-SiC nanocomposite fabricated by powder metallurgy, Modares Mechanical Engineering, 18 (2018) 361-368.
[3] A. Ahmed, A.J. Neely, K. Shankar, P. Nolan, S. Moricca, T. Eddowes, Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites, Metall. Mater. Trans. A, 41(6) (2010) 1582-1591.
[4] J. Onoro, M.D. Salvador, L.E.G. Cambronero, High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles, Mater. Sci. Eng. A, 499(1-2) (2009) 421-426.
[5] R.M. Mohanty, K. Balasubramanian, S.K. Seshadri, Boron carbide-reinforced alumnium 1100 matrix composites: fabrication and properties, Mater. Sci. Eng. A, 498(1-2) (2008) 42-52.
[6] D.A. Fredenburg, N.N. Thadhani, T.J. Vogler, Shock consolidation of nanocrystalline 6061-T6 aluminum powders, Mater. Sci. Eng. A, 527(15) (2010) 3349-3357.
[7] M.A. Meyers, D.J. Benson, E.A. Olevsky, Shock consolidation: microstructurally-based analysis and computational modeling, Acta Mater., 47(7) (1999) 2089-2108.
[8] K. Rahmani, G.H. Majzoobi, A. Atrian, Simultaneous effects of strain rate and temperature on mechanical response of fabricated Mg–SiC nanocomposite, J. Compos. Mater., (2019) DOI: 0021998319864629.
[9] G.H. Majzoobi, K. Rahmani, A. Atrian, Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction, Mater. Res. Express, 5(1) (2018) 015046.
[10] J. Wang, H. Yin, X. QU, Analysis of density and mechanical properties of high velocity compacted iron powder, Acta Metall. Sinica, 22 (2009) 447-453.
[11] W.H. Gourdin, Dynamic consolidation of metal powders, Prog. Mater Sci., 30(1) (1986) 39-80.
[12] ASM International. ASM handbook: Volume 7: Powder Metal Technologies and Applications, Materials Park, OH: ASM International, (1998).
[13] B. Azhdar, B. Stenberg, L. Kari, Development of a high-velocity compaction process for polymer powders, Polym. Test., 24(7) (2005) 909-919.
[14] C.E. Ruegger, M. Çelik, The influence of varying precompaction and main compaction profile parameters on the mechanical strength of compacts, Pharm. Dev. Technol., 5(4) (2000) 495-505.
[15] E.P. Carton, M. Stuivinga, H.J. Verbeek, Crack prevention in shock compaction of powders, AIP
Conference Proceedings, 429(1) (1998) 549-552.
[16] M. Stuivinga, E.P. Carton, J.R. de Wijn, Shock compaction of bioceramic composites, in: EXPLOMET 2000, International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, Albuquerque, New Mexico, USA, (2000) 19-22.
[17] G.H. Majzoobi, A. Atrian, M. Pipelzadeh, Effect of densification rate on consolidation and properties
of Al7075–B4C composite powder, Powder Metall., 58 (2015) 281-288.
[18] A. Atrian, G.H. Majzoobi, H. Bakhtiari, The effect of pre-compaction on dynamic compaction process of Al/SiC nanocomposite powder, The BiAnnual International Conference on Experimental Solid Mechanics and Dynamics (X-Mech-2014), (2014).
[19] S.J. Hong, J.M. Koo, J.G. Lee, M.K. Lee, H.H. Kim, C.K. Rhee, Precompaction Effects on Density and Mechanical Properties of Al2O3 Nanopowder Compacts Fabricated by Magnetic Pulsed Compaction, Mater. Trans., 50 (2009) 2885-2890.
[20] M.J. Yi, H.Q. Yin, J.Z. Wang, X.J. Yuan, X.H. Qu, Comparative research on high-velocity compaction and conventional rigid die compaction, Front. Mater. Sci. China, 3(4) (2009) 447.
[21] K. Rahmani, G.H. Majzoobi, A. Atrian, A novel approach for dynamic compaction of Mg–SiC
nanocomposite powder using a modified Split Hopkinson Pressure Bar, Powder Metall., 61(2) (2018) 164-177.
[22] G.H. Majzoobi, H. Bakhtiari, A. Atrian, M.K. Pipelzadeh, S.J. Hardy, Warm dynamic compaction of Al6061/SiC nanocomposite powders, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(2) (2016) 375-387.
[23] A. Nayeem Faruqui, P. Manikandan, T. Sato, Y. Mitsuno, K. Hokamoto, Mechanical milling and
synthesis of Mg-SiC composites using under water shock consolidation, Met. Mater. Int., 18(1) (2012)
157-163.
[24] ASTM, Standard Practice for Microetching Metals and Alloys, in, United Stated of America: ASTM, (2005).
[25] ASTM E384-00 Test Method for Microindentation Hardness of Materials, American Society for Testing and Materials International, Volume 03.01, W. Conshohocken, PA, (2003).
[26] Standard, Standard test methods of compression testing of metallic materials at room temperature,
1990 Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, (1990) 98-105.
[27] G.H. Majzoobi, K. Rahmani, A. Atrian, An experimental investigation into wear resistance of MgSiC nanocomposite produced at high rate of compaction, J. Stress Anal., 3(1) (2018) 35-45.