The Effect of Pre-compaction on Properties of Mg/SiC Nanocomposites Compacted at High Strain Rates

Document Type: Original Article

Authors

1 Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran.

2 Mechanical Engineering Department, Ayatollah Boroujerdi University, Boroujerd, Iran.

10.22084/jrstan.2019.19874.1105

Abstract

The effect of pre-compaction on mechanical properties of Mg/SiC nanocomposites prepared through dynamic compaction was investigated. The dynamic compactions were carried out at two different loading rates using Drop Hammer (DH) and Split Hopkinson Bar (SHB). The quasi-static pre-compaction was performed under two different pressures of 50 and 100MPa and at 450C. The results show that the highest improvement in density, hardeness, and strength are obtained for the pre-compaction pressure of 50MPa. The reason is believed to be due to the discharge of the air packets trapped between the particles. For the pre-compaction pressure of 100MPa, however, density, strength, and hardness decrease. The reason is thought to be due to creation of cracks and faults in the specimens. The results indicate that there is an optimum for the pre-compaction pressure which varies depending on the type of matrix, reinforcing particles, and compaction loading rate.

Keywords


[1] E.D. Francis, N.E. Prasad, C. Ratnam, P.S. Kumar, V.V. Kumar, Synthesis of nano alumina reinforced magnesium-alloy composites, Int. J. Adv. Sci. Technol., 27 (2011) 35-44.
[2] K. Rahmani, G.H. Majzoobi, An investigation on SiC volume fraction and temperature on static and dynamic behavior of Mg-SiC nanocomposite fabricated by powder metallurgy, Modares Mechanical Engineering, 18 (2018) 361-368.
[3] A. Ahmed, A.J. Neely, K. Shankar, P. Nolan, S. Moricca, T. Eddowes, Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites, Metall. Mater. Trans. A, 41(6) (2010) 1582-1591.
[4] J. Onoro, M.D. Salvador, L.E.G. Cambronero, High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles, Mater. Sci. Eng. A, 499(1-2) (2009) 421-426.
[5] R.M. Mohanty, K. Balasubramanian, S.K. Seshadri, Boron carbide-reinforced alumnium 1100 matrix composites: fabrication and properties, Mater. Sci. Eng. A, 498(1-2) (2008) 42-52.
[6] D.A. Fredenburg, N.N. Thadhani, T.J. Vogler, Shock consolidation of nanocrystalline 6061-T6 aluminum powders, Mater. Sci. Eng. A, 527(15) (2010) 3349-3357.
[7] M.A. Meyers, D.J. Benson, E.A. Olevsky, Shock consolidation: microstructurally-based analysis and computational modeling, Acta Mater., 47(7) (1999) 2089-2108.
[8] K. Rahmani, G.H. Majzoobi, A. Atrian, Simultaneous effects of strain rate and temperature on mechanical response of fabricated Mg–SiC nanocomposite, J. Compos. Mater., (2019) DOI: 0021998319864629.
[9] G.H. Majzoobi, K. Rahmani, A. Atrian, Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction, Mater. Res. Express, 5(1) (2018) 015046.
[10] J. Wang, H. Yin, X. QU, Analysis of density and mechanical properties of high velocity compacted iron powder, Acta Metall. Sinica, 22 (2009) 447-453.
[11] W.H. Gourdin, Dynamic consolidation of metal powders, Prog. Mater Sci., 30(1) (1986) 39-80.
[12] ASM International. ASM handbook: Volume 7: Powder Metal Technologies and Applications, Materials Park, OH: ASM International, (1998).
[13] B. Azhdar, B. Stenberg, L. Kari, Development of a high-velocity compaction process for polymer powders, Polym. Test., 24(7) (2005) 909-919.
[14] C.E. Ruegger, M. Çelik, The influence of varying precompaction and main compaction profile parameters on the mechanical strength of compacts, Pharm. Dev. Technol., 5(4) (2000) 495-505.
[15] E.P. Carton, M. Stuivinga, H.J. Verbeek, Crack prevention in shock compaction of powders, AIP
Conference Proceedings, 429(1) (1998) 549-552.
[16] M. Stuivinga, E.P. Carton, J.R. de Wijn, Shock compaction of bioceramic composites, in: EXPLOMET 2000, International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, Albuquerque, New Mexico, USA, (2000) 19-22.
[17] G.H. Majzoobi, A. Atrian, M. Pipelzadeh, Effect of densification rate on consolidation and properties
of Al7075–B4C composite powder, Powder Metall., 58 (2015) 281-288.
[18] A. Atrian, G.H. Majzoobi, H. Bakhtiari, The effect of pre-compaction on dynamic compaction process of Al/SiC nanocomposite powder, The BiAnnual International Conference on Experimental Solid Mechanics and Dynamics (X-Mech-2014), (2014).
[19] S.J. Hong, J.M. Koo, J.G. Lee, M.K. Lee, H.H. Kim, C.K. Rhee, Precompaction Effects on Density and Mechanical Properties of Al2O3 Nanopowder Compacts Fabricated by Magnetic Pulsed Compaction, Mater. Trans., 50 (2009) 2885-2890.
[20] M.J. Yi, H.Q. Yin, J.Z. Wang, X.J. Yuan, X.H. Qu, Comparative research on high-velocity compaction and conventional rigid die compaction, Front. Mater. Sci. China, 3(4) (2009) 447.
[21] K. Rahmani, G.H. Majzoobi, A. Atrian, A novel approach for dynamic compaction of Mg–SiC
nanocomposite powder using a modified Split Hopkinson Pressure Bar, Powder Metall., 61(2) (2018) 164-177.
[22] G.H. Majzoobi, H. Bakhtiari, A. Atrian, M.K. Pipelzadeh, S.J. Hardy, Warm dynamic compaction of Al6061/SiC nanocomposite powders, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(2) (2016) 375-387.
[23] A. Nayeem Faruqui, P. Manikandan, T. Sato, Y. Mitsuno, K. Hokamoto, Mechanical milling and
synthesis of Mg-SiC composites using under water shock consolidation, Met. Mater. Int., 18(1) (2012)
157-163.
[24] ASTM, Standard Practice for Microetching Metals and Alloys, in, United Stated of America: ASTM, (2005).
[25] ASTM E384-00 Test Method for Microindentation Hardness of Materials, American Society for Testing and Materials International, Volume 03.01, W. Conshohocken, PA, (2003).
[26] Standard, Standard test methods of compression testing of metallic materials at room temperature,
1990 Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, (1990) 98-105.
[27] G.H. Majzoobi, K. Rahmani, A. Atrian, An experimental investigation into wear resistance of MgSiC nanocomposite produced at high rate of compaction, J. Stress Anal., 3(1) (2018) 35-45.