[1] H. Bahmanabadi, S. Rezanezhad, M. Azadi, M. Azadi, Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models, Mater. Res. Express, 5(2) (2018) 26509.
[2] N. Habibi, S. Samawati, O. Ahmadi, Creep analysis of the FGM cylinder under steady-state symmetric
loading, J. Stress Anal., 1(1) (2016) 9-21.
[3] M. Saadatfar, Effect of hygrothermal environmental conditions on the time-dependent creep response of functionally graded magneto-electroelastic hollow sphere, J. Stress Anal., 4(1) (2019) 27-41.
[4] V.S. Chevali, D.R. Dean, G.M. Janowski, Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and time-temperature-stress superposition, Composites Part A, 40(6-7) (2009) 870-877.
[5] M. Eftekhari, A. Fatemi, Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics, Composite Part B, 97 (2016) 68-83.
[6] S. Rwawiire, B. Tomkova, J. Wiener, J. Militky, A. Kasedde, B.M. Kale, A. Jabbar, Short-term creep
of barkcloth reinforced laminar epoxy composites, Composite Part B, 103 (2016) 131-138.
[7] Y. Du, N. Yan, M. T. Kortschot, An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels, Compos. Struct., 106 (2013) 160-166.
[8] R. Song, A.H. Muliana, A. Palazotto, An empirical approach to evaluate creep responses in polymers
and polymeric composites and determination of design stresses, Compos. Struct., 148 (2016) 207-223.
[9] T. Pulngern, T. Chitsamran, S. Chucheepsakul, V. Rosarpitak, S. Patcharaphun, N, Sombatsompop,
Effect of temperature on mechanical properties and creep responses for wood/PVC composites, Constr.
Build. Mater., 111 (2016) 191-198.
[10] A. Jabbar, J. Militky, B.M. Kale, S. Rwawiire, Y. Nawab, V. Baheti, Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers, Ind. Crops Prod., 84 (2016) 230-240.
[11] P.K. Dutta, D. Hui, Creep rupture of a GFRP composite at elevated temperatures, Ind. Crops Prod., 76(1-3) (2000) 153-161.
[12] A. Gupta, J. Raghavan, Creep of plain weave polymer matrix composites under on-axis and off-axis
loading, Composites Part A, 41(9) (2010) 1289-1300.
[13] S. Mortazavian, A. Fatemi, Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis, Int. J. Fatigue, 102 (2017) 171-183.
[14] S.K. Ghosh, R.K. Prusty, D.K. Rathore, B.C. Ray, Creep behaviour of graphite oxide nanoplates
embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress, Composites Part A, 102 (2017) 166-177.
[15] A. Pegoretti, T. Ricco, Creep crack growth in a short glass fibres reinforced polypropylene composite, J. Mater. Sci., 36(19) (2001) 4637-4641.
[16] F. Su, P. Huang, J. Wu, B. Chen, Q. Wang, R. Yao, T. Li, X. Pan, Creep behavior of C/SiC composite in hot oxidizing atmosphere and its mechanism, Ceram. Int., 43(12) (2017) 9355-9362.
[17] R. Cano-Crespo, B. M. Moshtaghioun, D. GomezGarcia, A. Dominguez-Rodriguez, R. Moreno, High-temperature creep of carbon nanofiberreinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering, Ceram. Int., 43(9) (2017) 7136-7141.
[18] A. Plaseied, A. Fatemi, Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite, J. Reinf. Plast. Compos., 28(14)(2009) 1775-1788.
[19] K.C. Hung, T.L. Wu, Y.L. Chen, J.H. Wu, Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites, Constr.
Build. Mater., 108 (2016) 139-145.
[20] J. Raghavan, M. Meshii, Creep of polymer composites, Compos. Sci. Technol., 57(12) (1998) 1673-1688.
[21] J. Militky, A. Jabbar, Comparative evaluation of fiber treatments on the creep behavior of jute/green
epoxy composites, Composite Part B, 80 (2015) 361-368.