Continuum Damage Mechanics for Creep Lifetime Estimation in Polymer Matrix Composites at Various Temperatures

Document Type: Original Article


Faculty of Mechanical Engineering, Semnan University, Semnan, Iran.



Nowadays, composites have great applications in mechanical structures due to their proper ratio of the strength to the weight. Such application includes automotive and aerospace industries. These components may be affected by the creep phenomenon, when they work at high temperatures. Therefore, there should be appropriate creep behavior of materials for these parts. In this article, the Continuum Damage Mechanics (CDM) method was used to calculate the creep lifetime of various polymer matrix composites. For this objective, experimental data were utilized from creep tests in the literature, on standard specimens, at different temperatures. Then, the
relation between the stress, the temperature and the lifetime was presented by the CDM approach, which was calibrated by experimental results. In addition, the Levenberg-Marquardt method was employed to optimize the creep lifetime equation and to find temperature-dependent material constants. Consequently, the obtained results showed that there was a good agreement between experimental and calculated creep lifetimes of composites.


[1] H. Bahmanabadi, S. Rezanezhad, M. Azadi, M. Azadi, Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models, Mater. Res. Express, 5(2) (2018) 26509.
[2] N. Habibi, S. Samawati, O. Ahmadi, Creep analysis of the FGM cylinder under steady-state symmetric
loading, J. Stress Anal., 1(1) (2016) 9-21.
[3] M. Saadatfar, Effect of hygrothermal environmental conditions on the time-dependent creep response of functionally graded magneto-electroelastic hollow sphere, J. Stress Anal., 4(1) (2019) 27-41.
[4] V.S. Chevali, D.R. Dean, G.M. Janowski, Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and time-temperature-stress superposition, Composites Part A, 40(6-7) (2009) 870-877.
[5] M. Eftekhari, A. Fatemi, Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics, Composite Part B, 97 (2016) 68-83.
[6] S. Rwawiire, B. Tomkova, J. Wiener, J. Militky, A. Kasedde, B.M. Kale, A. Jabbar, Short-term creep
of barkcloth reinforced laminar epoxy composites, Composite Part B, 103 (2016) 131-138.
[7] Y. Du, N. Yan, M. T. Kortschot, An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels, Compos. Struct., 106 (2013) 160-166.
[8] R. Song, A.H. Muliana, A. Palazotto, An empirical approach to evaluate creep responses in polymers
and polymeric composites and determination of design stresses, Compos. Struct., 148 (2016) 207-223.
[9] T. Pulngern, T. Chitsamran, S. Chucheepsakul, V. Rosarpitak, S. Patcharaphun, N, Sombatsompop,
Effect of temperature on mechanical properties and creep responses for wood/PVC composites, Constr.
Build. Mater., 111 (2016) 191-198.
[10] A. Jabbar, J. Militky, B.M. Kale, S. Rwawiire, Y. Nawab, V. Baheti, Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers, Ind. Crops Prod., 84 (2016) 230-240.
[11] P.K. Dutta, D. Hui, Creep rupture of a GFRP composite at elevated temperatures, Ind. Crops Prod., 76(1-3) (2000) 153-161.
[12] A. Gupta, J. Raghavan, Creep of plain weave polymer matrix composites under on-axis and off-axis
loading, Composites Part A, 41(9) (2010) 1289-1300.
[13] S. Mortazavian, A. Fatemi, Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis, Int. J. Fatigue, 102 (2017) 171-183.
[14] S.K. Ghosh, R.K. Prusty, D.K. Rathore, B.C. Ray, Creep behaviour of graphite oxide nanoplates
embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress, Composites Part A, 102 (2017) 166-177.
[15] A. Pegoretti, T. Ricco, Creep crack growth in a short glass fibres reinforced polypropylene composite, J. Mater. Sci., 36(19) (2001) 4637-4641.
[16] F. Su, P. Huang, J. Wu, B. Chen, Q. Wang, R. Yao, T. Li, X. Pan, Creep behavior of C/SiC composite in hot oxidizing atmosphere and its mechanism, Ceram. Int., 43(12) (2017) 9355-9362.
[17] R. Cano-Crespo, B. M. Moshtaghioun, D. GomezGarcia, A. Dominguez-Rodriguez, R. Moreno, High-temperature creep of carbon nanofiberreinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering, Ceram. Int., 43(9) (2017) 7136-7141.
[18] A. Plaseied, A. Fatemi, Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite, J. Reinf. Plast. Compos., 28(14)(2009) 1775-1788.
[19] K.C. Hung, T.L. Wu, Y.L. Chen, J.H. Wu, Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites, Constr.
Build. Mater., 108 (2016) 139-145.
[20] J. Raghavan, M. Meshii, Creep of polymer composites, Compos. Sci. Technol., 57(12) (1998) 1673-1688.
[21] J. Militky, A. Jabbar, Comparative evaluation of fiber treatments on the creep behavior of jute/green
epoxy composites, Composite Part B, 80 (2015) 361-368.