Investigation of Exerted Force on Roller and Roller Width Effects on Residual Stresses in Direct and Indirect Rolling of FSW of SU304 Steel

Document Type: Original Research Paper


1 Mechanical Engineering Department, Tabriz University, Tabriz, Iran.

2 Mechanical Engineering Department, Engineering Faculty, Malayer University, Malayer, Iran.

3 Mechanical Engineering Department, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

4 Mechanical Engineering Department, Arak Branch, Islamic Azad University, Arak, Iran.


In this paper, the effects of two parameters named width of the roller and exerted force on it in direct and indirect rolling, on residual stresses in Friction Stir Welding (FSW) process of SU304 steel have been studied. FSW numerical modeling has been performed by ABAQUS. In both direct and indirect rolling, five levels have been considered for each variable. Based on the results, it has been shown that both variables have significant effects on the pattern and maximum of residual stresses. In general, in both direct and indirect rolling, by increasing the rolling force, residual stresses decrease intensely. In direct rolling, tensile residual stresses decrement happens locally by using relatively narrow rollers and increasing the rolling force. While in wide rollers, the decrement in tensile residual stresses occurs constantly. Based on the results, using direct rolling causes more decrement in welding tensile residual stresses in comparison with indirect rolling. In direct and indirect rolling, the minimum tensile residual stresses take place when the width of roller is equal to diameter and half of the diameter of welding tool, respectively. In this situation, the maximum of tensile residual stresses decreases 97.4% for direct rolling and 57.3% for indirect rolling.


[1] R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing: Science and Engineering,
Springer International Publishing, (2014).
[2] N. Dialami, M. Cervera, M. Chiumenti, C. A. de Saracibar, Local–global strategy for the prediction of residual stresses in FSW processes, Int. J. Adv. Manuf. Technol., 88(9-12) (2017) 3099-3111.
[3] M. Bachmann, J. Carstensen, L. Bergmann, J.F. dos Santos, C.S. Wu, M, Rethmeier, Numerical
simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at
different welding speeds, Int. J. Adv. Manuf. Technol., 91(1-4) (2017) 1443-1452.
[4] L. Fratini, S. Pasta, Residual stresses in friction stir welded parts of complex geometry, Int. J. Adv.
Manuf. Technol., 59(5-8) (2012) 547-557.
[5] P. Dong, Residual stresses and distortions in welded structures: a perspective for engineering applications, Sci. Technol. Weld. Joining, 10(4) (2005) 389-398.
[6] V. Richter-Trummer, E. Suzano, M. Beltrão, A. Roos, J.F. dos Santos, P.M.S.T. de Castro, Influence of the FSW clamping force on the final distortion and residual stress field, Mater. Sci. Eng. A, 538 (2012) 81-88.
[7] A. Steuwer, M.J. Peel, P.J. Withers, Dissimilar friction stir welds in AA5083–AA6082: the effect of
process parameters on residual stress, Mater. Sci. Eng. A, 441(1-2) (2006) 187-196.
[8] L.N. Brewer, M.S. Bennett, B.W. Baker, E.A. Payzant, L.M. Sochalski-Kolbus, Characterization of residual stress as a function of friction stir welding parameters in oxide dispersion strengthened (ODS) steel MA956, Mater. Sci. Eng. A, 647 (2015) 313-321.
[9] H. Papahn, P. Bahemmat, M. Haghpanahi, Effect of cooling media on residual stresses induced by a
solid-state welding: underwater FSW, Int. J. Adv. Manuf. Technol., 83(5-8) (2016) 1003-1012.
[10] V. Farajkhah, Y. Liu, Effect of clamping area and welding speed on the friction stir weldinginduced residual stresses, Int. J. Adv. Manuf. Technol., 90(1-4) (2017) 339-348.
[11] J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad, S.W. Wen, Residual stress engineering in friction stir welds by roller tensioning, Sci. Technol. Weld. Joining, 14(2) (2009) 185-192.
[12] S.W. Wen, P.A. Colegrove, S.W. Williams, S.A. Morgan, A. Wescott, M. Poad, Rolling to control residual stress and distortion in friction stir welds, Sci. Technol. Weld. Joining, 15(6) (2010):440-447.
[13] H.D. Hibbit, B.I. Karlsson, E.P. Sorensen, ABAQUS user manual, version 6.12. Simulia, Providence, RI, (2012).
[14] X.K. Zhu, Y.J. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, J. Mater. Process. Technol., 146(2) (2004) 263-272.
[15] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modell. Simul. Mater. Sci. Eng., 12(1) (2003) 143-157.
[16] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes, J. Mater. Process. Technol., 213(8) (2013)1433-1439.
[17] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Thermo-mechanical finite element model of friction
stir welding of dissimilar alloys, Int. J. Adv. Manuf. Technol., 72(5-8) (2014) 607-617.