A Numerical Method to Analyze the Brittle Fracture Using Phase-field Theory

Document Type : Original Research Paper

Authors

Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran.

Abstract

Phase-field method is one of the recent developed fracture simulation methods which has attracted much interest in the last decade. Phase-field method can precisely simulate the crack nucleation as well as crack propagation path in complicated geometries. In general, phase filed method is a nonlocal theory that defines the cracks and other defects as a continuous part of the geometry with defining a length scale parameter. The major deficiency of this method is that it computationally is very time consuming. In this paper, a new numerical method based on finite element method was proposed to diminish the computational cost. The suggested numerical method was coded in Abaqus/Standard using an UEL subroutine. The simulations of different two-dimensional geometries demonstrate the capability of this method to predict the fracture process of brittle material. Results show that the proposed numerical method could significantly decrease the solution time in comparison to other methods.

Keywords


[1] M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55 (2014) 383-405.
[2] G. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. phys. Solids, 46(8) (1998) 1319-1342.
[3] B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. phys. Solids, 48(4) (2000) 797-826.
[4] B. Bourdin, G.A. Francfort, J.J. Marigo, The variational approach to fracture, J. Elast., 91 (2008) 5-148.
[5] C. Kuhn, R. Müller, A continuum phase field model for fracture, Eng. Fract. Mech., 77(18) (2010) 3625-3634.
[6] C. Kuhn, R. Müller, A new finite element technique for a phase field model of brittle fracture, J. Theor. Appl. Mech., 49(4) (2011) 1115-1133.
[7] G. Lancioni, G. Royer-Carfagni, The variational approach to fracture mechanics. A practical application to the French Panthon in Paris, J. Elast., 95(1-2) (2009) 1-30.
[8] H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with  unilateral contact: Numerical experiments, J. Mech. phys. Solids, 57(8) (2009) 1209-1229.
[9] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199(45-48) (2010) 2765-2778.
[10] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83(10) (2010) 1273-1311.
[11] C.J. Larsen, Models for dynamic fracture based on griffith’s criterion, In: Hackl. (eds) IUTAM symposioum on variational concepts with applications to the Mechanics of Materials, IUTAM Bookseries,
Vol. 21, Springer, Dordrecht, (2010).
[12] C.J. Larsen, C. Ortner, E. Suli, Existence of solutions to a regularized model of dynamic fracture, Math. Methods Models Appl. Sci., 20(7) (2010) 1021-1048.
[13] B. Bourdin, C.J. Larsen, C.L. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168(2) (2011) 133-143.
[14] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods. Appl. Mech. Eng., 217-220 (2012) 77-95.
[15] M. Hofacker, C. Miehe, A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns, Int. J. Numer. Methods Eng., 93(3) (2013) 276-301.
[16] B. Bourdin, C.P. Chukwudozie, K. Yoshioka, A variational approach to the numerical simulation of hydraulic fracturing, In Proceedings of the 2012 SPE Annual Technical Conference and Exhibition, volume SPE 159154, Society of Petroleum Engineers Publisher, (2012).
[17] A. Mikelic, M.F. Wheeler, T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, Multiscale Model. Simul., 13(1) (2015) 367-398.
[18] Z.A. Wilson, M.J. Borden, C.M. Landis, A phasefield model for fracture in piezoelectric ceramics, Int. J. Fract., 183(2) (2013) 135-153.
[19] C. Miehe, L.M. Schanzel, Phase field modeling of fracture in rubbery polymers. part I: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65 (2014) 93-113.
[20] O. Gültekin, H. Dal, G.A. Holzapfel, A phase-field approach to model fracture of arterial walls: theory and finite element analysis, Comput. Methods Appl. Mech. Eng., 312 (2016) 542-566.
[21] G. Molnár, A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modelling brittle fracture, Finite Elem. Anal. Des., 130 (2017) 27-38.
[22] P. Zhang, X. Hu, X. Wang, W. Yao, An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus, Eng. Fract. Mech., 204 (2018) 268-287.
[23] T.K. Mandal, V.P. Nguyen, Jian-Ying Wu, Length scale and mesh bias sensitivity of phasefield models for bbrittle and cohesive fracture, Eng. Fract. Mech., 217 (2019) 106532.
[24] K. Seleš, T. Lesičar, Z. Tonković, J. Sorić, A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205 (2019) 370-386.
[25] J. Fang, C. Wu, T. Rabczuk, C. Wu, C. Ma, G. Sun, Q. Li, Phase Field Fracture in Elasto-plastic Solids: Abaqus implementation and case studies, Theor. Appl. Fract. Mech., 103 (2019) 102252.
[26] M.J. Borden, T.J.R. Hughes, C.M. Landis, A. Anvari, I.J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Eng., 312 (2016) 130-166.
[27] M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V. Verhoosel, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Eng., 273 (2014) 100-118.