[1] M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55 (2014) 383-405.
[2] G. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. phys. Solids, 46(8) (1998) 1319-1342.
[3] B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. phys. Solids, 48(4) (2000) 797-826.
[4] B. Bourdin, G.A. Francfort, J.J. Marigo, The variational approach to fracture, J. Elast., 91 (2008) 5-148.
[5] C. Kuhn, R. Müller, A continuum phase field model for fracture, Eng. Fract. Mech., 77(18) (2010) 3625-3634.
[6] C. Kuhn, R. Müller, A new finite element technique for a phase field model of brittle fracture, J. Theor. Appl. Mech., 49(4) (2011) 1115-1133.
[7] G. Lancioni, G. Royer-Carfagni, The variational approach to fracture mechanics. A practical application to the French Panthon in Paris, J. Elast., 95(1-2) (2009) 1-30.
[8] H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. phys. Solids, 57(8) (2009) 1209-1229.
[9] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199(45-48) (2010) 2765-2778.
[10] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83(10) (2010) 1273-1311.
[11] C.J. Larsen, Models for dynamic fracture based on griffith’s criterion, In: Hackl. (eds) IUTAM symposioum on variational concepts with applications to the Mechanics of Materials, IUTAM Bookseries,
Vol. 21, Springer, Dordrecht, (2010).
[12] C.J. Larsen, C. Ortner, E. Suli, Existence of solutions to a regularized model of dynamic fracture, Math. Methods Models Appl. Sci., 20(7) (2010) 1021-1048.
[13] B. Bourdin, C.J. Larsen, C.L. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168(2) (2011) 133-143.
[14] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods. Appl. Mech. Eng., 217-220 (2012) 77-95.
[15] M. Hofacker, C. Miehe, A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns, Int. J. Numer. Methods Eng., 93(3) (2013) 276-301.
[16] B. Bourdin, C.P. Chukwudozie, K. Yoshioka, A variational approach to the numerical simulation of hydraulic fracturing, In Proceedings of the 2012 SPE Annual Technical Conference and Exhibition, volume SPE 159154, Society of Petroleum Engineers Publisher, (2012).
[17] A. Mikelic, M.F. Wheeler, T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, Multiscale Model. Simul., 13(1) (2015) 367-398.
[18] Z.A. Wilson, M.J. Borden, C.M. Landis, A phasefield model for fracture in piezoelectric ceramics, Int. J. Fract., 183(2) (2013) 135-153.
[19] C. Miehe, L.M. Schanzel, Phase field modeling of fracture in rubbery polymers. part I: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65 (2014) 93-113.
[20] O. Gültekin, H. Dal, G.A. Holzapfel, A phase-field approach to model fracture of arterial walls: theory and finite element analysis, Comput. Methods Appl. Mech. Eng., 312 (2016) 542-566.
[21] G. Molnár, A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modelling brittle fracture, Finite Elem. Anal. Des., 130 (2017) 27-38.
[22] P. Zhang, X. Hu, X. Wang, W. Yao, An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus, Eng. Fract. Mech., 204 (2018) 268-287.
[23] T.K. Mandal, V.P. Nguyen, Jian-Ying Wu, Length scale and mesh bias sensitivity of phasefield models for bbrittle and cohesive fracture, Eng. Fract. Mech., 217 (2019) 106532.
[24] K. Seleš, T. Lesičar, Z. Tonković, J. Sorić, A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205 (2019) 370-386.
[25] J. Fang, C. Wu, T. Rabczuk, C. Wu, C. Ma, G. Sun, Q. Li, Phase Field Fracture in Elasto-plastic Solids: Abaqus implementation and case studies, Theor. Appl. Fract. Mech., 103 (2019) 102252.
[26] M.J. Borden, T.J.R. Hughes, C.M. Landis, A. Anvari, I.J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Eng., 312 (2016) 130-166.
[27] M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V. Verhoosel, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Eng., 273 (2014) 100-118.