Magneto-piezo-mechanical Stresses Analysis of a Porous FGPM Rotating Non-uniform Thickness Disc with Variable Angular Velocity

Document Type : Original Research Paper


Department of Mechanical Engineering, University of Qom, Qom, Iran.


The mechanical behavior of a fluid-saturated functionally graded porous piezoelectric material (FGPPM) rotating disc with variable angular velocity and thickness placed in a constant magnetic field was investigated. Due to variable angular velocity, the disc was subjected to Lorentz force in two directions: radial and circumferential. It was assumed the disc is power-law functionally graded in the radial direction. The disc is uniformly porous and its thickness varies as a function of radius. First, three coupled governing partial differential equations were converted to ordinary differential equations using the separation of variable technique. Then, equations were solved using Runge-Kutta and shooting methods for the case of fixed-free boundary condition. The effect of variable angular velocity, thickness profile, inhomogeneity index, porosity and magnetic field was investigated. The results demonstrate that considering angular acceleration for the disc has a considerable effect on the Lorentz force resulted by the magnetic field. Besides, the angular velocity constant has a significant effect on the stresses and displacements in the presence of the magnetic field.


[1] M. Shaban, H. Mazaheri, Closed-form elasticity solution for smart curved sandwich panels with soft core, Appl. Math. Modell., 76 (2019) 50-70.
[2] M. Shaban, A. Alibeigloo, Global bending analysis of corrugated sandwich panels with integrated piezoelectric layers, J. Sandwich Struct. Mater., 22(4) (2018) 1055-1073.
[3] M.J. Khoshgoftar, A. Ghorbanpour Arani, M. Arefi, Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material, Smart Mater. Struct., 18(11) (2009) 115007.
[4] M. Saadatfar, Analytical solution for the creep problem of a rotating functionally graded agnetoelectro-elastic hollow cylinder in thermal environment, Int. J. Appl. Mech., 11(06) (2019) 1950053.
[5] M. Saadatfar, M. Aghaie-Khafri, On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition, J. Therm. Stresses, 38(8) (2015) 854-881.
[6] M. Saadatfar, Effect of hygrothermal environmental conditions on the time-dependent creep response of functionally graded magneto-electroelastic hollow sphere, J. Stress Anal., 4(1) (2019) 27-41.
[7] A.M. Zenkour, Analytical solution for rotating exponentially-graded annular disks with various boundary conditions, Int. J. Struct. Stab. Dyn., 5(4) (2005) 557-557.
[8] H. Zharfi, Creep relaxation in FGM rotating disc with nonlinear axisymmetric distribution of heterogeneity, Theor. Appl. Mech. Lett., 9(6) (2019) 382-390.
[9] H. Zharfi, H. Ekhteraei Toussi, Time dependent creep analysis in thick FGM rotating disk with twodimensional pattern of heterogeneity, Int. J. Mech. Sci., 140 (2018) 351-360.
[10] M. Saadatfar, Multiphysical time-dependent creep response of FGMEE hollow cylinder in thermal and humid environment, Mech. Time-Depend. Mater., (2019), DOI:10.1007/s11043019094330.
[11] H.L. Dai, Z.Q. Zheng, T. Dai, Investigation on a rotating FGPM circular disk under a coupled hygrothermal field, Appl. Math. Modell., 46 (2017) 28-47.
[12] A. Loghman, M. Abdollahian, A. Jafarzadeh Jazi, A. Ghorbanpour Arani, Semi-analytical solution for electromagneto-thermoelastic creep repose of functionally graded piezoelectric rotating disk, Int. J. Therm. Sci., 65 (2013) 254-266.
[13] A. Ghorbanpour Arani, Z. Khoddami Maraghi, M.R. Mozdianfard, A.R. Shajari, Thermo-piezomagneto-mechanical stresses analysis of FGPM hollow rotating thin disk, Int. J. Mech. Mater. Des., 6(4) (2010) 341-349.
[14] M. Saadatfar, Time-dependent creep response of magneto-electro-elastic rotating disc in thermal and humid environmental condition, Aust. J. Mech. Eng., 4(1) (2020) 81-90.
[15] M. Bayat, M. Saleem, B.B. Sahari, A.M.S. Hamouda, A. Mahdi, Analysis of functionally graded rotating disks with variable thickness, Mech. Res. Commun., 35(3) (2008) 283-309.
[16] M. Bayat, M. Saleem, B.B. Sahari, A.M.S. Hamouda, A. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, Int. J. Press. Vessels Pip., 86(6) (2009) 357-372.
[17] M. Bayat, B.B. Sahari, M. Saleem, A.M.S. Hamouda, J.N. Reddy, Thermo elastic analysis of functionally graded rotating disks with temperature-dependent material properties: uniform and variable thickness, Int. J. Mech. Mater. Des., 5(3) (2009) 263-279.
[18] A.M. Zenkour, D.S. Mashat, Analytical and numerical solutions for a rotating annular disk of variable thickness, J. Appl. Math., 1(5) (2010) 431-438.
[19] H. Zafarmand, B. Hassani, Analysis of twodimensional functionally graded rotating thick disks with variable thickness, Acta Mech., 225(2) (2014) 453-464.
[20] A.K. Thawait, L. Sondhi, Sh. Sanyal, Sh. Bhowmick, Elastic analysis of functionally graded variable thickness rotating disk by element based material grading, J. Solid Mech., 9(3) (2017) 650-662.
[21] M.N.M. Allam, R. Tantawy, A.M. Zenkour, Thermoelastic stresses in functionally graded rotating annular disks with variable thickness, J. Theor. Appl. Mech., 56(4) (2018) 1029-1041.
[22] V. Vullo, F. Vivio, Elastic stress analysis of nonlinear variable thickness rotating disks subjected to thermal load and having variable density along the radius, Int. J. Solids Struct., 45(20) (2008) 5337-5355.
[23] D. Deepak, V.K. Gupta, A.K. Dham, Creep modeling in functionally graded rotating disc of variable thickness, J. Mech. Sci. Technol., 24(11) (2010) 2221-2232.
[24] A.N. Rybjanets, O.N. Razumovskaja, L.A. Reznitchenko, V.D. Komarov, A.V. Turik, Lead titanate and lead metaniobate porous ferroelectric ceramics, Integr. Ferroelectr., 63(1) (2004) 197-200.
[25] A.N. Rybyanets, Porous piezoelectric ceramics-a historical overview, Ferroelectr., 419(1) (2011) 90-96.
[26] J.F. Li, K. Takagi, M. Ono, W. Pan, R. Watanabe, A. Almajid, M. Taya, Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators, J. Am. Ceram. Soc., 86(7) (2003) 1094-1098.
[27] C.R. Bowen, A. Perry, A.C.F. Lewis, H. Kara, Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit, J. Eur. Ceram. Soc., 24(2) (2004) 541-545.
[28] T.G. Zielinski, Fundamentals of multiphysics modelling of piezo-poro-elastic structures, Arch. Mech., 62(5) (2010) 343-378.
[29] M. Jabbari, M. Meshkini, M.R. Eslami, Nonaxisymmetric mechanical and thermal stresses in FGPPM hollow cylinder, J. Pressure Vessel Technol., 134(6) (2012) 061212.
[30] M. Jabbari, M. Meshkini, M.R. Eslami, Mechanical and thermal stresses in FGPPM hollow cylinder due to radially symmetric loads, J. Pressure Vessel Technol., 138(1) (2016) 011207.
[31] M. Meshkini, K. Firoozbakhsh, M. Jabbari, A. SelkGhafari, Asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder, J. Therm. Stresses, 40(4) (2017) 448-469.
[32] T. Dai, H.L. Dai, Investigation of mechanical behavior for a rotating FGM circular disk with a variable angular speed, J. Mech. Sci. Technol., 29(9) (2015) 3779-3787.
[33] T. Dai, H.L. Dai, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed, Appl. Math. Modell., 40(17-18) (2016) 7689-7707.
[34] Y. Zheng, H. Bahaloo, D. Mousanezhad, E. Mahdi, A. Vaziri, H. Nayeb-Hashemi, Stress analysis in functionally graded rotating disks with nonuniform thickness and variable angular velocity, Int. J. Mech. Sci., 119 (2016) 283-293.
[35] M. Salehian, B. Shahriari, M. Yousefi, Investigating the effect of angular acceleration of the rotating disk having variable thickness and density function on shear stress and tangential displacement, J. Braz. Soc. Mech. Sci. Eng., 41 (2019) 31.
[36] S.H, Chi, Y.L. Chung, Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis, Int. J. Solids Struct., 43(13) (2006) 3657-3674.
[37] M. Saadatfar, Effect of interlaminar weak bonding and constant magnetic field on the hygrothermal stresses of a FG hybrid cylindrical shell using DQM, J. Stress Anal., 3(1) (2018) 93-110.
[38] R. Ansari, M. Darvizeh, Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions, Compos. Struct., 85(4) (2008) 284-292.
[39] M. Saadatfar, M. Aghaie-Khafri, On the magnetothermo-elastic behavior of a functionally graded cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an
elastic foundation, J. Solid Mech., 7(3) (2015) 344-363.
[40] M. Saadatfar, Stress redistribution analysis of piezomagnetic rotating thick-walled cylinder with temperature and moisture-dependent material properties, J. Appl. Comput. Mech., 6(1) (2020) 90-104.
[41] A. Behravan Rad, M. Shariyat, Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with nonuniform tractions and Kerr elastic foundations, Compos. Struct., 125 (2015) 558-574.
[42] M. Saadatfar, M.H. Zarandi, Deformations and stresses of an exponentially graded magnetoelectro-elastic non-Uniform thickness annular plate which rotates with variable angular speed, Int. J. Appl. Mech., 12(5) (2020) 2050050.
[43] M.A. Othman, S.Y. Atwa, The effect of magnetic field on 2-D problem of generalized thermoelasticity with energy dissipation. Int. J. Ind. Math., 3(3) (2011) 213-226.
[44] M. Saadatfar, M.H. Zarandi, Effect of angular acceleration on the mechanical behavior of an exponentially graded piezoelectric rotating annular plate with variable thickness, Mech. Based Des. Struct. Mach., (2020), DOI:10.1080/1539773420201751198.
[45] M. Saadatfar, M.H. Zarandi, M. Babaelahi, Effects of porosity, profile of thickness, and angular acceleration on the magneto-electro-elastic behavior of a porous FGMEE rotating disc placed in a
constant magnetic field, Proceedings of the institution of mechanical engineers, J. Mech. Eng. Sci., (2020), DOI:10.1177/0954406220938409.
[46] J.D. Hoffman, Numerical Methods for Engineers and Scientists, CRC Press, 2nd Edition, (2001).
[47] A. Ghorbanpour Arani, H. Khazaali, M. Rahnama, M. Dadkhah, Inhomogeneity material effect on electromechanical stresses, displacement and electric potential in FGM piezoelectric hollow rotating disk, J. Solid Mech., 2(2) (2010) 144-155.
[48] H.L. Dai, Y.M. Fu, J.H. Yang, Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere, Acta Mech. Sin., 23 (2007) 55-63.
[49] H.L. Dai, H.J. Jiang, Analytical study for electromagnetothermoelastic behavior of a functionally graded piezoelectric solid cylinder, Mech. Adv. Mater. Struct., 20(10) (2013) 811-818.