[1] A. Azzam, W. Li, An experimental investigation on the three-point bending behavior of composite laminate, IOP Conference Series: Materials Science and Engineering, IOP Publishing, Ningbo, China, 62 (2014) 012016.
[2] A. Farrokhabadi, S.A. Taghizadeh, H. Madadi, H. Norouzi, A. Ataei, Experimental and numerical analysis of novel multi-layer sandwich panels under three point bending load, Compos. Struct., 250 (2020) 112631.
[3] Ł. Pyrzowski, B. Sobczyk, Local and global response of sandwich beams made of GFRP facings and PET foam core in three point bending test, Compos. Struct., 241 (2020) 112122.
[4] T.S. Lim, C.S. Lee, D.G. Lee, Failure modes of foam core sandwich beams under static and impact loads, J. Compos. Mater., 38(18) (2004) 1639-1662.
[5] F.J. Yang, W.J. Cantwell, Impact damage initiation in composite materials, Compos. Sci. Technol., 70(2) (2010) 336-342.
[6] G. Minak, D. Ghelli, Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates, Compos. B. Eng., 39(6) (2008) 962-972.
[7] S. Zhu, G.B. Chai, Damage and failure mode maps of composite sandwich panel subjected to quasistatic indentation and low velocity impact, Compos. Struct., 101 (2013) 204-214.
[8] F. Zhu, G. Lu, D. Ruan, Z. Wang, Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores, Int. J. Prot. Struct., 1(4) (2010) 507-541.
[9] X. Fan, I. Verpoest, D. Vandepitte, Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb, J. Sandwich Struct. Mater., (2005) 875-884.
[10] S.R. Swanson, Limits of quasi-static solutions in impact of composite structures, Compos. Eng., 2(4) (1992) 261-267.
[11] B.C. Ray, Effects of crosshead velocity and sub-zero temperature on mechanical behaviour of hygrothermally conditioned glass fibre reinforced epoxy composites, Mater. Sci. Eng. A, 379(1-2) (2004) 39-44.
[12] S.R. Hallett, C. Ruiz, J. Harding, The effect of strain rate on the interlaminar shear strength of a carbon/epoxy cross-ply laminate: comparison between experiment and numerical prediction, Compos. Sci. Technol., 59(5) (1999) 749-758.
[13] L.S. Sutherland, C.G. Soares, Contact indentation of marine composites, Compos. Struct., 70(3) (2005) 287-294.
[14] P.M. Schubel, J.J. Luo, I.M. Daniel, Low velocity impact behavior of composite sandwich panels, Composites, Part A, 36(10) (2005) 1389-1396.
[15] S. Feli, M.M Jalilian, Experimental and optimization of mechanical properties of epoxy/nanosilica and hybrid epoxy/fiberglass/nanosilica composites, J. Compos. Mater., 50(28) (2016) 3891-3903.
[16] ASTM D7250/D7250M-20, Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness, ASTM International, West Conshohocken, PA, (2016).
[17] G.B. Murri, E.G. Guynn, Analysis of delamination growth from matrix cracks in laminates subjected to bending loads, In Composite Materials: Testing and Design (Eighth Conference), ed. J. Whitcomb, West Conshonhocken, PA: ASTM International, (1988) 322-339.
[18] S. Xiao, P. Chen, Q. Ye, Prediction of damage area in laminated composite plates subjected to low velocity impact, Compos. Sci. Technol., 98 (2014) 51-56.
[19] E.M. Soliman, M.P. Sheyka, M.R. Taha, Lowvelocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes, Int. J. Impact Eng., 47 (2012) 39-47.
[20] G.A.O. Davies, X. Zhang, Impact damage prediction in carbon composite structures, Int. J. Impact Eng., 16(1) (1995) 149-170.