The Effect of 2% SiO2 Nanopowder on Mechanical Behavior of Mg AZ31

Document Type : Original Research Paper


Department of Mechanical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.


The AZ31 alloy containing nanopowder SiO2, in comparison to other magnesium alloys, can be utilized for manufacturing extruded parts with a high loading rate. The main goal of the present study is to investigate the compressive flow stress for AZ31 alloy reinforced with 2 % SiO2 nano particles (with mean diameter of 35±2 nm) in three different temperatures of 473, 493, and 513 K and three strain rates of 0.0002, 0.002 and 0.02s-1 using ring compression test. The stress-strain curve at three temperatures and three strain rates were obtained by implicating the bulge and numerical correction factors. Having drawn stress and strain curve, a relation between stress and strain using the Zener-Hollomon equation, which is based on activation energy from plastic forming, was found. The coefficients of the Zener-Hollomon equation were computed for achiving the activation energy.


[1] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulation of magnesium alloy sheet forming at elevated temperatures, J. Mater. Process. Technol., 146(1) (2004) 52-60.
[2] G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, S. Yue, The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet,  Mater. Sci. Eng. A, 487(1-2) (2008) 243-250.
[3] C.E. Dreyer, W.V. Chiu, R.H. Wagoner, S.R. Agnew, Formability of a more randomly textured magnesium alloy sheet: Application of an improved warm sheet formability test, J. Mater. Process. Technol., 210 (2010) 37-47.
[4] J. Zhang, H.F. Yin, Y. Tang, H.D. Yuan, Y. Wei, Y. Hong-feng, The influence of CF and TLCP coreinforced on the mechanical properties of PA6-based composites, Mater. Res. Express, 5(5) (2018) 121-128.
[5] V. Doni Pon, K.S.J. Wilson, Effect of metal nanoparticles on polariton dispersion in low dimensional systems, Mater. Res. Express, 6(11) (2019) 62-73.
[6] Z. Zhang, S.H. Chen, Y. Zhang, Effect of hydrotalcite-like compounds with high specific surface area on mechanical properties and carbonation resistance of cementitious composites, Mater. Res. Express, 6(11) (2019) 119-128.
[7] K.T. Yang, H.K. Kim, Elevated temperature deformation behavior in an AZ31 magnesium alloy, J. Mech. Sci. Technol., 20 (2006) 1209-1216.
[8] C.S. Chung, D.K. Chun, H.K. Kim, Fatigue properties of finegrained magnesium alloys after severe plastic deformation, J. Mech. Sci. Technol., 19 (2005) 1441-1448.
[9] Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability, Mater. Sci. Eng. A, 487(1-2) (2008) 316-327.
[10] M. Kohzu, F. Yoshida, H. Somekawa, M. Yoshikawa, S. Tanabe, K. Higash, Fracture mechanism and forming Limit in deep-drawing of magnesium alloy AZ31, Mater. Trans., 42(7) (2001) 1273-1276.
[11] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulation of magnesium alloy sheet forming at elevated temperatures, J. Mater. Process. Technol., 146(1) (2004) 52-60.
[12] F.K. Chen, T.B. Huang, Formability of stamping magnesium-alloy AZ31 sheets, J. Mater. Process. Technol., 142 (2003) 643-647.
[13] J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Deformation mechanisms responsible for the high ductility in an Mg AZ31 alloy analyzed by electron backscattered diffraction, Metall. Mater. Trans. A,
36 (2005) 1427-1438.
[14] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, J. Mater. Process. Technol., 208(1-3) (2008) 29-34.
[15] M. Li, Constitutive Modeling of Slip, Twinning, and Untwinning in AZ31B Magnesium, Ph.D. Thesis, Department of Materials Science and Engineering, USA: The Ohio State University, (2006).
[16] N.T. Nguyen, M.G. Lee, J.H. Kim, H.Y. Kim, A practical constitutive model for AZ31B Mg alloy sheets with the unusual stress-strain response, Finite Elem. Anal. Des., 76 (2013) 39-49.
[17] F. Barati, A numerical approach for determination of flow curve and evaluation of frictional behavior of AZ61 magnesium alloy under elevated temperature forming conditions, Measurement, 74 (2015) 1-10.
[18] S. Sharma, A. Honda, S.S. Sing, D. Verma, Influence of tool rotation speed on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-Grapghen-AZ31 magnesium alloy, J. Magnesium Alloys, 7(3) (2019) 487-500.
[19] Y. Yan, X. Chu, X., Luo, X. Xu, Y. Zhang, Y.L. Dai, D. Li, L. Chen, T. Xiao, K. Yu, A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layerin Ringer’s solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case, J. Magnesium Alloys, In Press (2020), DOI:10/1016/j.jma.2020.03.010.
[20] F. Barati, M. Latifi, E. Moayer Far, M.H. Mosallanejad, A. Saboori, Novel AM60-SiO2 nanocomposite produced via ultrasound-assisted casting; production and characteristics, Materials, 12(23) (2019) 3976.
[21] Z. Hosseini Tabar, F. Barati, Effects of SiC particles on fatique life of Al-matrix composites, J. Stress Anal., 4(1) (2019) 73-88.
[22] A. Haghani, S.H. Noorbakhsh, M. Jahangiri, Investigation of mechanical property and microstructure of nanocomposite AZ31/SiC fabricated by friction stir process, Int. J. Adv. Des. Manuf. Technol., 9(2) (2016) 27-34.
[23] F. Fereshte-Saniee, F. Barati, H. Badnava, KH. Falah-nejad, An exponential material model for prediction of the flow curves of several AZ series magnesium alloy intension and compression, Mater. Des., 35 (2012) 1-11.