[1] Society of Automotive Engineers, SAE Handbook: Automotive, Warrendele, PA, (1986).
[2] R. Fathallah, H. Sidhom, C. Braham, L. Castex, Effect of surface properties on high cycle fatigue behaviour of shot peened ductile steel, Mater. Sci. Technol., 19(8) (2003) 1050-1056.
[3] A.M. Eleiche, M.M. Megahed, N.M. Abd-Allah, The shot-peening effect on the HCF behavior of high-strength martensitic steels, J. Mater. Process. Technol., 113(1-3) (2001) 502-508.
[4] D.A. Hills, R.B. Waterhouse, B. Noble, An analysis of shot peening, J. Strain Anal. Eng. Des., 18(2) (1983) 95-100.
[5] Y.F. Al-Obaid, Shot peening mechanics: experimental and theoretical analysis, Mech. Mater., 19(2-3) (1995) 251-260.
[6] S.T.S. Al-Hassani, Mechanical aspects of residual stress development in shot peening, Shot Peening, 583 (1981).
[7] M. Obata, A. Sudo, Effect of shot peening on residual stress and stress corrosion cracking for cold worked austenitic stainless steel, in Proceeding of the ICSP-5 Conference, Oxford, UK, (1993) 258-264.
[8] T. Dorr, M. Hilpert, P. Beckmerhagen, A. Kiefer, L. Wagner, Influence of shot peening on fatigue performance of high-strength aluminum-and magnesium alloys, Proceedings of the ICSP-7 conference, Warsaw, Poland, (1999) 153-160.
[9] A.A. Ahmed, M. Mhaede, M. Basha, M. Wollmann, L. Wagner, The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel, Surf. Coat. Technol., 280 (2015) 347-358.
[10] S.B. Mahagaonkar, P.K. Brahmankar, C.Y. Seemikeri, Effect of shot peening parameters on microhardness of AISI 1045 and 316L material: an analysis using design of experiment, Int. J. Adv. Manuf. Technol., 38(5-6) (2008) 563-574.
[11] Y.S. Nam, Y.I. Jeong, B.C. Shin, J.H. Byun, Enhancing surface layer properties of an aircraft aluminum alloy by shot peening using response surface methodology, Mater. Des., 83 (2015) 566-576.
[12] T. Hong, J.Y. Ooi, B. Shaw, A numerical simulation to relate the shot peening parameters to the induced residual stresses, Eng. Fail. Anal., 15(8) (2008) 1097-1110.
[13] S.A. Meguid, G. Shagal, J.C. Stranart, J. Daly, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses, Finite Elem. Anal. Des., 31(3) (1999) 179-191.
[14] M. Guagliano, Relating Almen intensity to residual stresses induced by shot peening: a numerical approach, J. Mater. Process. Technol., 110(3) (2001) 277-286.
[15] T. Kim, J.H. Lee, H. Lee, S.K. Cheong, An areaaverage approach to peening residual stress under multi-impacts using a three-dimensional symmetrycell finite element model with plastic shots, Mater. Des., 31(1) (2010) 50-59.
[16] C. Wang, J. Hu, Z. Gu, Y. Xu, X. Wang, Simulation on residual stress of shot peening based on a symmetrical cell model, Chin. J. Mech. Eng., 30(2) (2017) 344-351.
[17] S.A. Meguid, G. Shagal, J.C. Stranart, 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model, Int. J. Impact Eng., 27(2) (2002) 119-134.
[18] A. Ghasemi, S.M. Hassani-Gangaraj, A.H. Mahmoudi, G.H. Farrahi, M. Guagliano, Shot peening coverage effect on residual stress profile by FE random impact analysis, Surf. Eng., 32(11) (2016) 861-870.
[19] H.Y. Miao, S. Larose, C. Perron, M. Lévesque, On the potential applications of a 3D random finite element model for the simulation of shot peening, Adv. Eng. Software, 40(10) (2009) 1023-1038.
[20] A.H. Mahmoudi, A. Ghasemi, G.H. Farrahi, K. Sherafatnia, A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening, Mater. Des., 90 (2016) 478-487.
[21] T. Kim, H. Lee, S. Jung, J.H. Lee, A 3D FE model with plastic shot for evaluation of equi-biaxial peening residual stress due to multi-impacts, Surf. Coat. Technol., 206(13) (2012) 3125-3136.
[22] S.M.H. Gangaraj, M. Guagliano, G.H. Farrahi, An approach to relate shot peening finite element simulation to the actual coverage, Surf. Coat. Technol., 243 (2014) 39-45.
[23] D. Hu, Y. Gao, F. Meng, J. Song, Y. Wang, M. Ren, R. Wang, A unifying approach in simulating the shot peening process using a 3D random representative volume finite element model, Chin. J. Aeronaut., 30(4) (2017) 1592-1602.
[24] M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel, Arab. J. Sci. Eng., 43(9) (2018) 4863-4870.
[25] T. Kim, H. Lee, H.C. Hyun, S. Jung, Effects of rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening, Mater. Des., 46 (2013) 26-37.
[26] F. Yang, Y. Gao, Predicting the peen forming effectiveness of Ti-6Al-4V strips with different thicknesses using realistic finite element simulations, J. Eng. Mater. Technol., 138(1) (2016) 011004.
[27] D. Kirk, Theoretical principles of shot peening coverage, Shot Peener, 19(2) (2005) 24.
[28] D.C. Montgomery, Introduction Statistical Quality Control, John Wiley & Sons Inc. Global Education, (2012).
[29] B. Bhuvaraghan, S.M. Srinivasan, B. Maffeo, Numerical simulation of Almen strip response due to random impacts with strain-rate effects, Int. J. Mech. Sci., 53(6) (2011) 417-424.
[30] A. Gariépy, H.Y. Miao, M. Lévesque, Simulation of the shot peening process with variable shot diameters and impacting velocities, Adv. Eng. Software, 114 (2017) 121-133.
[31] L. Wagner, Mechanical surface treatments on titanium, aluminum and magnesium alloys, Mater. Sci. Eng., A, 263(2) (1999) 210-216.
[32] ENISO, Geometrical Product Specifications (GPS)-Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters, ISO 4287 (1997).
[33] D.S. Moore, G.P. McCabe, B. Craig, Introduction to the Practice of Statistics, W.H. Freeman: New York, (1993).
[34] V. Llaneza, F.J. Belzunce, Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening, Appl. Surf. Sci., 356 (2015) 475-485.
[35] X. Wang, Z. Wang, G. Wu, J. Gan, Y. Yang, H. Huang, J. He, H. Zhong, Combining the finite element method and response surface methodology for optimization of shot peening parameters, Int. J. Fatigue, 129 (2019) 105231.
[36] K.A. Soady, B.G. Mellor, G.D. West, G. Harrison, A. Morris, P.A.S. Reed, Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue, Int. J. Fatigue, 54 (2013) 106-117.
[37] S. Srilakshmi, D.V. Vidyasagar, S. Devaki Rani, The role of residual stresses with various shot peening parameters on 12% Cr blading steel for LP turbine applications, Int. J. Mech. Eng. Robot., 1(1) (2013) 90-96.