Effect of Shot Peening Parameters of AISI 420 on Stress and Roughness: An Analysis Using the Finite Element Method and the Response Surface Methodology

Document Type : Original Research Paper


Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran.


This paper aimed to study the process of shot peening using the combination of the Finite Element Analysis (FEA) and the Response Surface Methodology (RSM). The shot velocity, shot diameter, coverage percentage and thickness are selected as process parameters. Residual compressive stresses and roughness are considered as response variables. Using FEA, shot peening is simulated and RSM is employed to determine the governing models between the response variables and the input parameters. The statistical analysis of the results reveals that: (1) the induced surface stress depends upon the coverage percentage and sample thickness, and it is independent of the shot velocity and shot diameter, (2) the maximum compression stress depends on the coverage percentage and shot diameter respectively, (3) the depth of maximum compressive stress depends on shot velocity and shot diameter respectively, (4) the depth of compressive stress is dependent on all four factors, (5) the roughness, Ra, is only dependent on the shot velocity. The results are in good agreement with the experimental data of the literature.


[1] Society of Automotive Engineers, SAE Handbook: Automotive, Warrendele, PA, (1986).
[2] R. Fathallah, H. Sidhom, C. Braham, L. Castex, Effect of surface properties on high cycle fatigue behaviour of shot peened ductile steel, Mater. Sci. Technol., 19(8) (2003) 1050-1056.
[3] A.M. Eleiche, M.M. Megahed, N.M. Abd-Allah, The shot-peening effect on the HCF behavior of high-strength martensitic steels, J. Mater. Process. Technol., 113(1-3) (2001) 502-508.
[4] D.A. Hills, R.B. Waterhouse, B. Noble, An analysis of shot peening, J. Strain Anal. Eng. Des., 18(2) (1983) 95-100.
[5] Y.F. Al-Obaid, Shot peening mechanics: experimental and theoretical analysis, Mech. Mater., 19(2-3) (1995) 251-260.
[6] S.T.S. Al-Hassani, Mechanical aspects of residual stress development in shot peening, Shot Peening, 583 (1981).
[7] M. Obata, A. Sudo, Effect of shot peening on residual stress and stress corrosion cracking for cold worked austenitic stainless steel, in Proceeding of the ICSP-5 Conference, Oxford, UK, (1993) 258-264.
[8] T. Dorr, M. Hilpert, P. Beckmerhagen, A. Kiefer, L. Wagner, Influence of shot peening on fatigue performance of high-strength aluminum-and magnesium alloys, Proceedings of the ICSP-7 conference, Warsaw, Poland, (1999) 153-160.
[9] A.A. Ahmed, M. Mhaede, M. Basha, M. Wollmann, L. Wagner, The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel, Surf. Coat. Technol., 280 (2015) 347-358.
[10] S.B. Mahagaonkar, P.K. Brahmankar, C.Y. Seemikeri, Effect of shot peening parameters on microhardness of AISI 1045 and 316L material: an analysis using design of experiment, Int. J. Adv. Manuf. Technol., 38(5-6) (2008) 563-574.
[11] Y.S. Nam, Y.I. Jeong, B.C. Shin, J.H. Byun, Enhancing surface layer properties of an aircraft  aluminum alloy by shot peening using response surface methodology, Mater. Des., 83 (2015) 566-576.
[12] T. Hong, J.Y. Ooi, B. Shaw, A numerical simulation to relate the shot peening parameters to the induced residual stresses, Eng. Fail. Anal., 15(8) (2008) 1097-1110.
[13] S.A. Meguid, G. Shagal, J.C. Stranart, J. Daly, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses, Finite Elem. Anal. Des., 31(3) (1999) 179-191.
[14] M. Guagliano, Relating Almen intensity to residual stresses induced by shot peening: a numerical approach, J. Mater. Process. Technol., 110(3) (2001) 277-286.
[15] T. Kim, J.H. Lee, H. Lee, S.K. Cheong, An areaaverage approach to peening residual stress under multi-impacts using a three-dimensional symmetrycell finite element model with plastic shots,  Mater. Des., 31(1) (2010) 50-59.
[16] C. Wang, J. Hu, Z. Gu, Y. Xu, X. Wang, Simulation on residual stress of shot peening based on a symmetrical cell model, Chin. J. Mech. Eng., 30(2) (2017) 344-351.
[17] S.A. Meguid, G. Shagal, J.C. Stranart, 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model, Int. J. Impact Eng., 27(2) (2002) 119-134.
[18] A. Ghasemi, S.M. Hassani-Gangaraj, A.H. Mahmoudi, G.H. Farrahi, M. Guagliano, Shot peening coverage effect on residual stress profile by FE random impact analysis, Surf. Eng., 32(11) (2016) 861-870.
[19] H.Y. Miao, S. Larose, C. Perron, M. Lévesque, On the potential applications of a 3D random finite element model for the simulation of shot peening, Adv. Eng. Software, 40(10) (2009) 1023-1038.
[20] A.H. Mahmoudi, A. Ghasemi, G.H. Farrahi, K. Sherafatnia, A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening, Mater. Des., 90 (2016) 478-487.
[21] T. Kim, H. Lee, S. Jung, J.H. Lee, A 3D FE model with plastic shot for evaluation of equi-biaxial peening residual stress due to multi-impacts, Surf. Coat. Technol., 206(13) (2012) 3125-3136.
[22] S.M.H. Gangaraj, M. Guagliano, G.H. Farrahi, An approach to relate shot peening finite element simulation to the actual coverage, Surf. Coat. Technol., 243 (2014) 39-45.
[23] D. Hu, Y. Gao, F. Meng, J. Song, Y. Wang, M. Ren, R. Wang, A unifying approach in simulating the shot peening process using a 3D random representative volume finite element model, Chin. J. Aeronaut., 30(4) (2017) 1592-1602.
[24] M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel, Arab. J. Sci. Eng., 43(9) (2018) 4863-4870.
[25] T. Kim, H. Lee, H.C. Hyun, S. Jung, Effects of rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening, Mater. Des., 46 (2013) 26-37.
[26] F. Yang, Y. Gao, Predicting the peen forming effectiveness of Ti-6Al-4V strips with different thicknesses using realistic finite element simulations, J. Eng. Mater. Technol., 138(1) (2016) 011004.
[27] D. Kirk, Theoretical principles of shot peening coverage, Shot Peener, 19(2) (2005) 24.
[28] D.C. Montgomery, Introduction Statistical Quality Control, John Wiley & Sons Inc. Global Education, (2012).
[29] B. Bhuvaraghan, S.M. Srinivasan, B. Maffeo, Numerical simulation of Almen strip response due to random impacts with strain-rate effects, Int. J. Mech. Sci., 53(6) (2011) 417-424.
[30] A. Gariépy, H.Y. Miao, M. Lévesque, Simulation of the shot peening process with variable shot diameters and impacting velocities, Adv. Eng. Software, 114 (2017) 121-133.
[31] L. Wagner, Mechanical surface treatments on titanium, aluminum and magnesium alloys, Mater. Sci. Eng., A, 263(2) (1999) 210-216.
[32] ENISO, Geometrical Product Specifications (GPS)-Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters, ISO 4287 (1997).
[33] D.S. Moore, G.P. McCabe, B. Craig, Introduction to the Practice of Statistics, W.H. Freeman: New York, (1993).
[34] V. Llaneza, F.J. Belzunce, Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening, Appl. Surf. Sci., 356 (2015) 475-485.
[35] X. Wang, Z. Wang, G. Wu, J. Gan, Y. Yang, H. Huang, J. He, H. Zhong, Combining the finite element method and response surface methodology for optimization of shot peening parameters, Int. J. Fatigue, 129 (2019) 105231.
[36] K.A. Soady, B.G. Mellor, G.D. West, G. Harrison, A. Morris, P.A.S. Reed, Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue, Int. J. Fatigue, 54 (2013) 106-117.
[37] S. Srilakshmi, D.V. Vidyasagar, S. Devaki Rani, The role of residual stresses with various shot peening parameters on 12% Cr blading steel for LP turbine applications, Int. J. Mech. Eng. Robot., 1(1) (2013) 90-96.