Experimental Investigation of the Effect of Circular Cutout Trigger on Energy Absorption of Three-layered Steel/Polypropylene/Aluminum Deep Drawn Cups

Document Type : Original Research Paper


Mechanical Engineering Department, Najafabad Branch, Islamic Azad University, Iran


In this paper, energy absorbing characteristics of aluminum/polypropylene/steel sandwich cups are investigated. To this end, sandwich panels were fabricated using hot pressing technique. Then the panels were deep drawn using a circular punch to produce three-layer cups. Subsequently, the cups were axially compressed (crushed) under quasi-static deformation in order to investigate their energy absorption capacity. Finally, the effects of thickness of polypropylene layer as well as circular cutout triggers on energy absorption of the sandwiched cups were evaluated. The results show that changing the thickness of polypropylene layer from 1 to 2mm could successfully increase the energy absorption by about 24%. Furthermore, adding geometrical triggers like circular cutouts with radius of 2.5 mm could reduce the absorbed energy from 346J in the sample without trigger to about 335J in the sample with trigger (3.2% reduction). The trigger could also reduce the peak force near 14% (from about 29kN to about 26kN) that can be considered as a positive point of triggers to mitigate damage in the samples.


[1] F. İnce, H.S. Tu¨rkmen, Z. Mecitoğlu, N. Uludağ, I. Durgun, E. Altinok, H. O¨renel, A numerical and experimental study on the impact behavior of box structures, Procedia Eng., 10 (2011) 1736-1741.
[2] G.C. Jacob, J.F. Fellers, S. Simunovic, J.M. Starbuck, Energy absorption in polymer composites for automotive crashworthiness, J. Compos. Mater., 36(7) (2002) 813-850.
[3] Y. Ma, T. Sugahara, Y. Yang, H. Hamada, A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube, Compos. Struct., 123 (2015) 301-311.
[4] M. Weiss, M.E. Dingle, B.F. Rolfe, P.D. Hodgson, The influence of temperature on the forming behavior of metal/polymer laminates in sheet metal forming, ASME J. Eng. Mater. Technol., 129(4) (2007) 530-537.
[5] A. Alavi Nia, H. Badnava, K. Fallah Nejad, An experimental investigation on crack effect on the mechanical behavior and energy absorption of thinwalled tubes, Mater. Des., 32(6) (2011) 3594-3607.
[6] A. Atrian, H. Panahi, Experimental and finite element investigation on wrinkling behaviour in deep drawing process of Al3105/Polypropylene/Steel304 sandwich sheets, Procedia Manuf., 15 (2018) 984-991.
[7] M.J. Jakirahemed, M.J. Davidson, G. Venkateswarlu, L. Venugopal, A study on effect of process parameters on the expansion of thin-walled aluminium 7075 tubes, Int. J. Adv. Sci. Technol., 36 (2011) 83-94.
[8] W.M. Choi, T.S. Kwon, H.S. Jung, J.S. Kim, Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion tube, Int. J. Crashworthiness, 17(6) (2012) 1-9.
[9] A. Alavi Nia, A. Akhavan Attar, The effect of different layouts in internal and external stiffeners on the energy absorption of thin-walled structures with square sections, Arch. Civ. Mech. Eng., 17(4) (2017) 997-1010.
[10] A. Praveen Kumar, M. Nalla Mohamed, A. Jusuf, T. Dirgantara, L. Gunawan, Axial crash performance of press-formed open and end-capped cylindrical tubes - A comparative analysis, Thin-Walled Struct., 124 (2018) 468-488.
[11] S.A. Galehdari, A.H. Hashemian, J.E. Jam, A. Attrian, A new approach to buckling analysis of lattice composite structures, J. Solid Mech., 9(3) (2017) 599-607.
[12] B.J. Ramirez, U. Misra, V. Gupta, Viscoelastic foam-filled lattice for high energy absorption, Mech. Mater., 127 (2018) 39-47.
[13] A. Alavi Nia, H. Khodabakhsh, The effect of radial distance of concentric thin-walled tubes on their energy absorption capability under axial dynamic and quasi-static loading, Thin-Walled Struct., 93 (2015) 188-197.
[14] F. Fereshteh-Saniee, A. Alavi Nia, A. Atrian, An experimental investigation on the deep drawing process of steel-brass bimetal sheets, 12th Int’l Conference Metal Forming, (2008) 63-70.
[15] M. Parsa, Experimental and numerical determination of limiting drawing ratio of Al3105- Polypropylene-Al3105 sandwich sheets, ASME J. Eng. Mater. Technol., 132(3) (2010) 031004.
[16] S. Bagherzadeh, B. Mollaei-Dariani, K. Malekzadeh, Theoretical study on hydromechanical deep drawing process of bimetallic sheets and experimental observations, J. Mater. Process. Technol., 212(9) (2012) 1840-1849.
[17] H. Tsukamoto, Impact compressive behavior of deep-drawn cups consisting of aluminum/duralumin multi-layered graded structures, Mater. Sci. Eng., A, 198 (2015) 25-34.
[18] F. Samer, F. Tariochan, P. Khalili, H. Samaka, Enhancement of energy absorption of thin walled hexagonal tube by using trigger mechanisms, Int. J. Res. Eng. Tech., 2(8) (2013) 109-116.
[19] N.N. Hussain, S.P. Regalla, Y.V.D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial impact loading, Procedia Eng., 173 (2017) 1390-1398.
[20] H. Jiang, Y. Ren, B. Gao, J. Xiang, F.G. Yuan, Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms, Int. J. Mech. Sci., 131-132 (2017) 113-136.
[21] H. Han, F. Taheri, N. Pegg, Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout, Thin-Walled Struct., 45(3) (2007) 283-300.
[22] K.J. Kim, D. Kim, S.H. Choi, K. Chung, K.S. Shin, F. Barlat, K.H. Oh, J.R. Youn, Formability of AA5182/polypropylene/AA5182 sandwich sheets, J. Mater. Process. Technol., 139(1-3) (2003) 1-7.
[23] A. AlaviNia, A. Shirazi Beheshtiha, Investigation the effect of strain rate on mechanical behavior of aluminum thin-walled sections, 21st Annual International Conference on Mechanical Engineering, ISME2013, 7-9 May (2013). 
[24] F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Rameshd, K. Khalid, Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Struct., 71 (2013) 7-17.
[25] Standard, Annual Book of ASTM Standards, 1st Edition, American Society for Testing Materials International, (2001).
[26] A. Rajabi, M. Kadkhodayan, An experimental and numerical investigation of wrinkling in deep drawing of fiber-metal laminates, in 10th International Conference on Technology of Plasticity, ICTP 2011, Aachen, Sheet Metal Forming, (2011) 438-443.
[27] A. Rajabi, M. Kadkhodayan, M. Manoochehri, R. Farjadfar, Deep-drawing of thermoplastic metalcomposite structures: Experimental investigations, statistical analyses and finite element modeling, J. Mater. Process. Technol., 215 (2015) 159-170.
[28] H. Takuda, H. Fujimoto, N. Hatta, Formabilities of steel/aluminium alloy laminated composite sheets, J. Mater. Sci., 33(1) (1998) 91-97.
[29] J.U. Cho, S.J. Hong, S.K. Lee, C.D. Cho, Impact fracture behavior at the material of aluminum foam, Mater. Sci. Eng. A, 539 (2012) 250-258.
[30] R. Kalhor, S.W. Case, The effect of FRP thickness on energy absorption of metal-FRP square tubes
subjected to axial compressive loading, Compos. Struct., 130 (2015) 44-50.
[31] M.D. Goel, Deformation, energy absorption and crushing behavior of single-, double- and multi-wall
foam filled square and circular tubes, Thin-Walled Struct., 90 (2015) 1-11.
[32] N. Peixinho, D. Soares, C. Vilarinho, P. Pereira, D. Dimas, Experimental study of impact energy absorption in aluminium square tubes with thermal triggers, Mater. Res., 15(2) (2012) 323-332.
[33] L. Abah, A. Limam, M. Dejeammes, Effects of cutouts on static and dynamic behaviour of square aluminium extrusions, WIT Trans. Built Environ., 35 (1998) 10.
[34] G.H. Daneshi, S.J. Hosseinipour, Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Mate. Des., 23(7) (2002) 611-617.
[35] Q. Cheng, W. Altenhof, L. Li, Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities, Thin-Walled Struct., 44(4) (2006) 441-454.