Shear Strain Distribution in Cylindrical Samples Subjected to Deformation by Various Routes of Equal Channel Angular Pressing

Document Type : Original Research Paper


Mechanical Engineering Department, Razi University, Kermanshah, Iran.


Equal-channel angular pressing (ECAP) is an efficient process to produce bulk nanostructured materials, in which a large amount of strain can be imposed on the workpiece via multiple passing deformations without changing its dimensions. In this study the distribution of induced strain was analytically modeled by correlating the Cartesian coordinates with inclination angle (α) and polar angle (θ). The effects of die angles and the routes A and B (without and with rotation 90around the billet axis) were evaluated. The results indicated that the degree of strain rate for the inner corner was three times higher than that of the outer corner. In deformation via route A, the degree of strain rate for θ changed from pass to pass, but for α was the same for all the applied passes. In comparison, when the sample was subjected to deformation through route B, the strain distribution patterns altered from pass to pass. For route B, the maximum value of the inhomogeneity index was approximately 1.5 times less than that of route A.


[1] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater., 61(3) (2013) 782-817.
[2] E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, Int. J. Adv. Manuf. Technol., 100 (2019) 1647-1694.
[3] V. Segal, Equal channel angular extrusion (ECAE): from a laboratory curiosity to an industrial technology, Metals, 10(2) (2020) 244.
[4] R. Kapoor, Severe Plastic Deformation of Materials, A.K Tyagi, S. Banerjee, (eds), In: Materials under Extreme Conditions, Recent Trends and Future Prospects, Elsevier Inc, (2017) 717-754.
[5] R.Z. Valiev, T.G. Langdon, Principles of equalchannel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(7) (2006) 881-981.
[6] B.B. Straumal, A.A. Mazilkin, B. Baretzky, G. Schütz, E. Rabkin, R.Z. Valiev, Accelerated diffusion and phase transformations in CoCu alloys driven by the severe plastic deformation, Mater. Trans., 53(1) (2012) 63-71.
[7] A. Vinogradov, Y. Estrin, Analytical and numerical approaches to modelling severe plastic deformation, Prog. Mater. Sci., 95 (2018) 172-242.
[8] R.B. Figueiredo, M.T.P. Aguilar, P.R. Cetlin, Finite element modelling of plastic instability during ECAP processing of flow-softening materials, Mater. Sci. Eng. A, 430(1-2) (2006) 179-184.
[9] T.D. Horn, C.B. Silbermann, P. Frint, M. Wagner, J. Ihlemann, Strain localization during equalchannel angular pressing analyzed by finite element simulations, Metals, 8 (2018) 55.
[10] D.T. Zhang, Z. Li, Y.X. Tong, Y.F. Zheng, L. Li, New formulas of shear strain during equal-channel angular pressing process with consideration of influences of velocity and motion trajectory, J. Iron. Steel Res. Int., 23(10) (2016) 1020-1027.
[11] T.R. Milind, P.P. Date, Analytical and finite element modeling of strain generated in equal channel angular extrusion, Inter. J. Mech. Sci., 56(1) (2012) 26-34.
[12] K. Narooei, A. Karimi Taheri, A new model for prediction the strain field and extrusion pressure in ECAE process of circular cross section, Appl. Math. Modell., 34(7) (2010) 1901-1917.
[13] M.H. Payadar, M. Reihanian, R. Ebrahimi, T.A. Dean, M.M. Moshksar, An upper-bound approach for equal channel angular extrusion with circular cross-section, J. Mater. Proc. Technol., 198(1-3) (2008) 48-53.
[14] I.J. Beyerlein, C.N. Tomé, Analytical modeling of material flow in equal channel angular extrusion (ECAE), Mater. Sci. Eng. A, 380(1-2) (2004) 171-190.
[15] V.M. Segal, Slip line solutions, deformation mode and loading history during ECAP, Mater. Sci. Eng. A, 345(1-2) (2003) 36-46.
[16] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, Principle of ECAE for the processing of UFG materials, Scr. Mater., 35 (1996) 143-146.
[17] A.M. Rashidi, M. Etemadi, Investigation wavy interface forming and stretching in severe plastic deformed copper/steel bimetallic rod, Mech. Adv. Mater. Struct., (2020), DOI:10.1080/15376494.2020.1747668.
[18] V.M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A, 197(2) (1995) 157-164.
[19] N.E. Mahallawy, F.A. Shehata, M.A.E. Hameed, M.I.A.E. Aal, H.S. Kim, 3D FEM simulations for the homogeneity of plastic deformation in Al-Cu alloys during ECAP, Mater. Sci. Eng. A, 527(6) (2010) 1404-1410.
[20] K. Furuno, H. Akamatsu, K. Oh-ishi, M. Furukawa, Z. Horita, T.G. Langdon, Microstructural development in equal-channel angular pressing using a 60◦ die, Acta. Mater., 52(9) (2004) 2497-2507.
[21] G.H. Majzoobi, J. Mohammadi, M.K. Pipelzadeh, S. Lahmi, S.J. Hardy, A constitutive model for hardness considering the effects of strain, strain rate and temperature, J. Strain Anal. Eng. Des., 50 (2015) 284-298.
[22] N.A. Branch, G. Subhash, N.K. Arakere, M.A. Klecka, Material-dependent representative plastic strain for the prediction of indentation hardness, Acta Mater., 58(19) (2010) 6487-6494.
[23] F.O. Sonmez, A. Demir, Analytical relations between hardness and strain for cold formed parts, J. Mater. Process. Tech., 186(1-3) (2007) 163-173.
[24] J. Petruska, L. Janicek, On the evaluation of strain inhomogeneity by hardness measurement of formed products, J. Mater. Process. Tech., 143-144(1) (2003) 300-305.
[25] J.H. Palm, The relation between indentation hardness and strain for metals, JOM, 1 (1949) 904.
[26] S.C. Yoon, P. Quang, S.I. Hong, H.S. Kim, Die design for homogeneous plastic deformation during equal channel angular pressing, J. Mater. Process. Tech., 187-188 (2007) 46-50.
[27] R. Naseri, M. Kadkhodayan, M. Shariati, An experimental investigation of casing effect on mechanical properties of billet in ECAP process, Int. J. Adv. Manuf. Technol., 90 (2017) 3203-3216.
[28] S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, B. Clausen, Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion, Mater. Sci. Eng. A, 382(1-2) (2004) 217-236.
[29] T. Suo, Y. Li, Y. Guo, Y. Liu, The simulation of deformation distribution during ECAP using 3D finite element method, Mater. Sci. Eng., A, 432(1-2) (2006) 269-274.