[1] Z.Y. Liu, X.G. Li, C.W. Du, Y.F. Cheng, Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution, Corros. Sci., 51(12) (2009) 2863-2871.
[2] S.F. Medina, L. Rancel, M. Gomez, J.M. Amo, Prediction of KIC in a high strength bainitic steel, Eng. Fail. Anal., 35(Supplement C) (2013) 524-532.
[3] S. Cravero, C. Ruggieri, Structural integrity analysis of axially cracked pipelines using conventional and constraint-modified failure assessment diagrams, Int. J. Press. Vessel. Pip., 83(8) (2006) 607-617.
[4] L. Shuanlu, H. Yong, Q. Changy, Y. Pengbin, Z. Xinwei, L. Jinheng, Crack and fitness-for-service assessment of ERW crude oil pipeline, Eng. Fail. Anal., 13(4) (2006) 565-571.
[5] BS7910, Guidance on methods for assessing the acceptability of flaws in metallic structures, British Standards Institution, (2005).
[6] FITNET European Fitness-for-service Network, Proposal No. GTC1-2001-43049, Contract No. GIRT-CT-2001-05071, ww.eurofitnet.org.
[7] O.F. Hedden, Evolution of section XI of the ASME boiler and pressure vessel code, J. Press. Vessel Technol., 122(3) (2000) 234-241.
[8] RCC-MR. Regles de Conception et de Construction des materiels mecaniques des ilots nucleaires RNR, AFCEN, (2002).
[9] S. Webster, A. Bannister, Structural integrity assessment procedure for Europe–of the SINTAP programme overview, Eng. Fract. Mech., 67(6) (2000) 481-514.
[10] Standard, API 579-1/ASME FFS-1 Fitness for Service, Houston, TX: American Petroleum Institute, (2007).
[11] J.S. Lee, J.B. Ju, J. Jang, W.S. Kim, D. Kwon, Weld crack assessments in API X65 pipeline: failure assessment diagrams with variations in representative mechanical properties, Mater. Sci. Eng., A, 373(1) (2004) 122-130.
[12] E. Chatzidouros, A. Traidia, R.S. Devarapalli, D.I. Pantelis, T.A. Steriotis, M. Jouiad, Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions, Int. J. Hydrogen Energy, 43(11) (2018) 5747- 5759.
[13] L. Lamborn, S. Zhang, S. Limón, R. Lai, Pipeline Steel Fracture Toughness and the Need for a Toughness Database of API 5L Line Pipe, In 2020 13th International Pipeline Conference, (2020), American Society of Mechanical Engineers Digital Collection.
[14] F. Ibáñez-Gutiérrez, S. Cicero, Fracture assessment of notched short glass fibre reinforced polyamide 6: An approach from failure assessment diagrams and the theory of critical distances, Composites, Part B, 111 (2017) 124-133.
[15] J.H. Baek, K.P. Kim, C.M. Kim, W.S. Kim, C.S. Seok, Effects of pre-strain on the mechanical properties of API 5L X65 pipe, Mater. Sci. Eng., A, 527(6) (2010) 1473-1479.
[16] D. Angeles-Herrera, A. Albiter-Hernández, R. Cuamatzi-Meléndez, J.L. Gonzalez-Velazquez, Fracture toughness in the circumferentiallongitudinal and circumferential–radial directions of longitudinal weld API 5L X52 pipeline using standard C(T) and nonstandard curved SE(B) specimens, Int. J. Fract., 188(2) (2014) 251-256.
[17] V. Asghari, N. Choupani, M. Hanifi, CVN-KJC correlation model for API X65 gas pipeline, Eng. Fail. Anal., 79 (2017) 51-63.
[18] E. El-Danaf, M. Baig, A. Almajid, W. Alshalfan, M. Al-Mojil, S. Al-Shahrani, Mechanical, microstructure and texture characterization of API X65 steel, Mater. Des., 47 (2013) 529-538.
[19] S.Y. Shin, B. Hwang, S.Kim, S. Lee, Fracture toughness analysis in transition temperature region of API X70 pipeline steels, Mater. Sci. Eng., A, 429(1-2) (2006) 196-204.
[20] J.B. Ju, J.S. Lee, J.I. Jang, Fracture toughness anisotropy in a API steel line-pipe, Mater. Lett., 61(29) (2007) 5178-5180.
[21] D.Y. Park, J.P. Gravel, Fracture toughness measurements using two single-edge notched bend test methods in a single specimen, Eng. Fract. Mech., 144 (2015) 78-88.
[22] H.R. Hajibagheri, A. Heidari, R. Amini, An experimental investigation of the nature of longitudinal cracks in oil and gas transmission pipelines, J. Alloys Compd., 741 (2018) 1121-1129.
[23] API 5L-14, Standard Specification for Line Pipe, American Petroleum Institute, (2014).
[24] ASTM E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM International, (2012).
[25] A.A. Baron, The generalized diagram of fracture toughness for pipeline steels, Int. J. Press. Vessel. Pip., 98 (2012) 26-29.
[26] ASTM E1820, Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials (2015).
[27] X.K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Eng. Fract. Mech., 85 (2012) 1-46.
[28] A. Shahani, M. Rastegar, M. Botshekanan, H. Moayeri Kashani, Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets, Eng. Fract. Mech., 77(4) (2010) 646-659.
[29] M. Javidi, S.B. Horeh, Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel, Corros. Sci., 80 (2014) 213-220.
[30] ISO 12135, Standard Metallic materials - Unified method of test for the determination of quasistatic fracture toughness, International Organization for Standardization, (2016).
[31] D. Alkazraji, A Quick Guide to Pipeline Engineering, Elsevier, (2008).
[32] BS 7910-Guidance on methods for assessing the acceptability of flaws in metallic structures, In British Standards Institution, (2005).