An Experimental Determination of Fracture Toughness of API X46 Steel Pipeline Using Single Edge Bend and Crack Assessments by Failure Assessment Diagrams

Document Type : Original Research Paper

Authors

1 Mechanical Engineering Department, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.

2 Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Fars, Iran.

Abstract

For the first time, the fracture toughness of pipeline with outer diameter of 168.3mm (thickness: 6.9mm; grade: API X46) was determined using the J-integral (according to ASTM standard E1820), single edge bend [SE(B)], and single-specimen method. The pre-crack was created using fatigue and the crack propagation was measured using the unloading compliance method. In each stage of crack propagation, the J-integral parameter was calculated and JQ was obtained using the J-R curve. The results indicated that satisfied the test’s validity criteria, and was equated to JQ. Subsequently, KIC was gained from the relationship between JIC and KIC. For the given pipeline, JIC and KIC were equal to 51 kJ/m2 and 105.4MPam, respectively. In addition, assessment of longitudinal cracks with different depths and lengths on the pipes body was conducted using fracture toughness and Failure Assessment Diagrams (FADs) for levels one and two of BS7910 standard. Results showed that a longitudinal crack with a depth of 5mm and a length of 220mm lies in the safe zone.

Keywords


[1] Z.Y. Liu, X.G. Li, C.W. Du, Y.F. Cheng, Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution, Corros. Sci., 51(12) (2009) 2863-2871.
[2] S.F. Medina, L. Rancel, M. Gomez, J.M. Amo, Prediction of KIC in a high strength bainitic steel, Eng. Fail. Anal., 35(Supplement C) (2013) 524-532.
[3] S. Cravero, C. Ruggieri, Structural integrity analysis of axially cracked pipelines using conventional and constraint-modified failure assessment diagrams, Int. J. Press. Vessel. Pip., 83(8) (2006) 607-617.
[4] L. Shuanlu, H. Yong, Q. Changy, Y. Pengbin, Z. Xinwei, L. Jinheng, Crack and fitness-for-service assessment of ERW crude oil pipeline, Eng. Fail. Anal., 13(4) (2006) 565-571.
[5] BS7910, Guidance on methods for assessing the acceptability of flaws in metallic structures, British Standards Institution, (2005).
[6] FITNET European Fitness-for-service Network, Proposal No. GTC1-2001-43049, Contract No. GIRT-CT-2001-05071, ww.eurofitnet.org. 
[7] O.F. Hedden, Evolution of section XI of the ASME boiler and pressure vessel code, J. Press. Vessel Technol., 122(3) (2000) 234-241.
[8] RCC-MR. Regles de Conception et de Construction des materiels mecaniques des ilots nucleaires RNR, AFCEN, (2002).
[9] S. Webster, A. Bannister, Structural integrity assessment procedure for Europe–of the SINTAP programme overview, Eng. Fract. Mech., 67(6) (2000) 481-514.
[10] Standard, API 579-1/ASME FFS-1 Fitness for Service, Houston, TX: American Petroleum Institute, (2007).
[11] J.S. Lee, J.B. Ju, J. Jang, W.S. Kim, D. Kwon, Weld crack assessments in API X65 pipeline: failure assessment diagrams with variations in representative mechanical properties, Mater. Sci. Eng., A, 373(1) (2004) 122-130.
[12] E. Chatzidouros, A. Traidia, R.S. Devarapalli, D.I. Pantelis, T.A. Steriotis, M. Jouiad, Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions, Int. J. Hydrogen Energy, 43(11) (2018) 5747- 5759.
[13] L. Lamborn, S. Zhang, S. Limón, R. Lai, Pipeline Steel Fracture Toughness and the Need for a Toughness Database of API 5L Line Pipe, In 2020 13th International Pipeline Conference, (2020), American Society of Mechanical Engineers Digital Collection.
[14] F. Ibáñez-Gutiérrez, S. Cicero, Fracture assessment of notched short glass fibre reinforced polyamide 6: An approach from failure assessment diagrams and the theory of critical distances, Composites, Part B, 111 (2017) 124-133.
[15] J.H. Baek, K.P. Kim, C.M. Kim, W.S. Kim, C.S. Seok, Effects of pre-strain on the mechanical properties of API 5L X65 pipe, Mater. Sci. Eng., A, 527(6) (2010) 1473-1479.
[16] D. Angeles-Herrera, A. Albiter-Hernández, R. Cuamatzi-Meléndez, J.L. Gonzalez-Velazquez, Fracture toughness in the circumferentiallongitudinal and circumferential–radial directions of longitudinal weld API 5L X52 pipeline using standard C(T) and nonstandard curved SE(B) specimens, Int. J. Fract., 188(2) (2014) 251-256.
[17] V. Asghari, N. Choupani, M. Hanifi, CVN-KJC correlation model for API X65 gas pipeline, Eng. Fail. Anal., 79 (2017) 51-63.
[18] E. El-Danaf, M. Baig, A. Almajid, W. Alshalfan, M. Al-Mojil, S. Al-Shahrani, Mechanical, microstructure and texture characterization of API X65 steel, Mater. Des., 47 (2013) 529-538.
[19] S.Y. Shin, B. Hwang, S.Kim, S. Lee, Fracture toughness analysis in transition temperature region of API X70 pipeline steels, Mater. Sci. Eng., A, 429(1-2) (2006) 196-204.
[20] J.B. Ju, J.S. Lee, J.I. Jang, Fracture toughness anisotropy in a API steel line-pipe, Mater. Lett., 61(29) (2007) 5178-5180.
[21] D.Y. Park, J.P. Gravel, Fracture toughness measurements using two single-edge notched bend test methods in a single specimen, Eng. Fract. Mech., 144 (2015) 78-88.
[22] H.R. Hajibagheri, A. Heidari, R. Amini, An experimental investigation of the nature of longitudinal cracks in oil and gas transmission pipelines, J. Alloys Compd., 741 (2018) 1121-1129.
[23] API 5L-14, Standard Specification for Line Pipe, American Petroleum Institute, (2014).
[24] ASTM E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM International, (2012).
[25] A.A. Baron, The generalized diagram of fracture toughness for pipeline steels, Int. J. Press. Vessel. Pip., 98 (2012) 26-29.
[26] ASTM E1820, Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials (2015).
[27] X.K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Eng. Fract. Mech., 85 (2012) 1-46.
[28] A. Shahani, M. Rastegar, M. Botshekanan, H. Moayeri Kashani, Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets, Eng. Fract. Mech., 77(4) (2010) 646-659.
[29] M. Javidi, S.B. Horeh, Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel, Corros. Sci., 80 (2014) 213-220.
[30] ISO 12135, Standard Metallic materials - Unified method of test for the determination of quasistatic fracture toughness, International Organization for Standardization, (2016).
[31] D. Alkazraji, A Quick Guide to Pipeline Engineering, Elsevier, (2008).
[32] BS 7910-Guidance on methods for assessing the acceptability of flaws in metallic structures, In British Standards Institution, (2005).